Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Little is known about the microstructure of lipid-based formulations, or how their structure changes as they disperse in the lumen of the gastrointestinal tract. We used molecular dynamics (MD) simulation to study such formulations at the molecular level as they interact with water during dispersion.

Methods: We studied a simple lipid formulation, by itself and in the presence of drugs. The formulation contained mono- and di-lauroyl glycerides at 0-75% (w)/w water. Acyclovir, danazol, hydrocortisone, ketoprofen or progesterone, were included to investigate their dynamic behavior and localization during dispersion.

Results: Micro-structuring of the formulation was evident at all water concentrations. As the water content increased, the microstructure evolved from a continuous phase containing isolated water molecules, to a reverse micellar solution and finally to a system containing lamellar lipids with large pools of free water. Drugs partitioned into the aqueous and lipid domains principally under the influence of hydrogen bonding and hydrophobic interactions. Drugs located preferentially to the interfaces between water and lipid where they are able to make both hydrophobic and hydrophilic interactions.

Conclusion: Molecular dynamics simulations offer an unprecedented view of the structure of lipid-based formulations and has considerable potential as an in silico tool for formulators.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-013-1206-1DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
formulations molecular
8
interactions drugs
8
lipid-based formulations
8
water
7
molecular
5
glyceride lipid
4
formulations
4
lipid formulations
4
dynamics modeling
4

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".

View Article and Find Full Text PDF

The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.

View Article and Find Full Text PDF

In the search for novel succinate dehydrogenase inhibitors (SDHIs) fungicides for managing rice sheath blight (RSB) and sclerotinia stem rot (SSR), 28 pyrazole-4-carboxamides incorporating stilbene or diphenylacetylene scaffolds were synthesized and evaluated for antifungal activities. The results showed that compound exhibited the most promising antifungal efficacy against and with EC (half maximal effective concentration) values of 0.004 and 0.

View Article and Find Full Text PDF

Parasites can induce gene expression changes in their hosts, either benefiting the parasite or the host. In particular, trematodes are not only one of the most ubiquitous groups of aquatic parasites, they also have huge impacts on individual hosts with significant ecological and economic repercussions. The trematode Bucephalus minimus infects Cerastoderma edule (the edible cockle), a socioeconomically and ecologically important bivalve, as its first intermediate host.

View Article and Find Full Text PDF