98%
921
2 minutes
20
The transforming growth factor-beta 1 (TGFβ1) and NFκB pathways are important regulators of epidermal homeostasis, inflammatory responses and carcinogenesis. Previous studies have shown extensive crosstalk between these pathways that is cell type and context dependent, but this has not been well-characterized in epidermal keratinocytes. Here we show that in primary mouse keratinocytes, TGFβ1 induces NFκB-luciferase reporter activity that is dependent on both NFκB and Smad3. TGFβ1-induced NFκB-luciferase activity was blocked by the IκB inhibitor parthenolide, the IκB super-repressor, a dominant negative TGFβ1-activated kinase 1 (TAK1) and genetic deletion of NFκB1. Coexpression of NFκB p50 or p65 subunits enhanced NFκB-luciferase activity. Similarly, inhibition of the TGFβ1 type I receptor with SB431542 or genetic deletion of Smad3 blocked TGFβ1 induction of NFκB-luciferase. TGFβ1 rapidly induced IKK phosphorylation but did not cause a detectable decrease in cytoplasmic IκB levels or nuclear translocation of NFκB subunits, although EMSA showed rapid NFκB nuclear binding activity that could be blocked by SB431542 treatment. TNFα, a well characterized NFκB target gene was also induced by TGFβ1 and this was blocked in NFκB+/- and -/- keratinocytes and by the IκB super-repressor. To test the effects of the TGFβ1 pathway on a biologically relevant activator of NFκB, we exposed mice and primary keratinocytes in culture to UVB irradiation. In primary keratinocytes UVB caused a detectable increase in levels of Smad2 phosphorylation that was dependent on ALK5, but no significant increase in SBE-dependent gene expression. Inhibition of TGFβ1 signaling in primary keratinocytes with SB431542 or genetic deletion of Tgfb1 or Smad3 suppressed UVB induction of TNFα message. Similarly, UVB induction of TNFα mRNA was blocked in skin of Tgfb1+/- mice. These studies demonstrate that intact TGFβ1 signaling is required for NFκB-dependent gene expression in mouse keratinocytes and skin and suggest that a convergence of these pathways in the nucleus rather than the cytoplasm may be critical for regulation of inflammatory pathways in skin by TGFβ1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942663 | PMC |
http://dx.doi.org/10.1016/j.cyto.2013.09.004 | DOI Listing |
J Pathol Transl Med
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.
View Article and Find Full Text PDFJ Pathol Transl Med
September 2025
Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
Central nervous system tumors with BCL6 corepressor (BCOR) internal tandem duplications (ITDs) constitute a rare, recently characterized pediatric neoplasm with distinct molecular and histopathological features. To date, 69 cases have been documented in the literature, including our institutional case. These neoplasms predominantly occur in young children, with the cerebellum representing the most frequent anatomical location.
View Article and Find Full Text PDFMacrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDF