98%
921
2 minutes
20
This paper proposed a morphological component analysis (MCA) method, which is based on sparse representation, to detect the spike wave in electroencephalogram (EEG) signals. It takes the advantage of MCA being able to extract the background waves and the spike waves from the EEG signals, respectively,as the dictionaries and chooses the discrete cosine transform (DCT) and the daubechies order 4 wavelet (db4) transformation as the dictionaries of MCA to detect the spike waves from the epileptic EEG. The experiment results showed that the MCA could detect epileptic spike waves in EEG signals very effectively, and it yielded high selectivity of 89.01% and sensitivity of 90.71%. As a feature extraction/decomposition algorithm, MCA can be used to extract the spike waves from EEG signals.
Download full-text PDF |
Source |
---|
J Integr Neurosci
August 2025
School of Computer Science, Guangdong Polytechnic Normal University, 510665 Guangzhou, Guangdong, China.
Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition.
View Article and Find Full Text PDFFront Neurosci
August 2025
Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.
Objective: Construct a predictive model for rehabilitation outcomes in ischemic stroke patients 3 months post-stroke using resting state functional magnetic resonance imaging (fMRI) images, as well as synchronized electroencephalography (EEG) and electromyography (EMG) time series data.
Methods: A total of 102 hemiplegic patients with ischemic stroke were recruited. Resting - state functional magnetic resonance imaging (fMRI) scans were carried out on all patients and 86 of them underwent simultaneous electroencephalogram (EEG) and electromyogram (EMG) examinations.
Front Neurosci
August 2025
Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Depression is a common mental disorder, and its diagnosis is highly dependent on subjective assessment. Electroencephalogram (EEG), as a non-invasive and economical neurophysiological tool, has garnered considerable attention in recent years in the research of auxiliary diagnosis and clinical application. However, there exists a limited number of articles that summarize this body of research.
View Article and Find Full Text PDFData Brief
October 2025
Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha, Qatar.
PhysioPain dataset comprises several physiological data of different kinds of pain: no pain, headache, menstrual cycle pain and back/neck/waist pain in search of a sophisticated and complete approach to pain representation. The study comprised 99 individuals, of whom 93 participants contributed real-time physiological data. These participants underwent experiment process to gather real-time physiological data including electroencephalogram (EEG), skin temperature, electrodermal activity (EDA), blood volume pulse (BVP), and accelerometer data.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Coimbatore, India.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.
View Article and Find Full Text PDF