98%
921
2 minutes
20
Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evo.12136 | DOI Listing |
Front Sports Act Living
August 2025
Faculty of Physical Education, China West Normal University, Nanchong, China.
Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.
View Article and Find Full Text PDFSpinal Cord Ser Cases
September 2025
Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Study Design: Concurrent mixed methods case series.
Objectives: To examine the feasibility and effect of a peer-facilitated, remote handcycling sport program on physical, psychological, and social health of individuals with spinal cord injury or disease (SCI/D) aged ≥50 years.
Setting: Participants' homes.
Int J Nurs Stud
August 2025
Florence Nightingale Faculty of Nursing Midwifery and Palliative Care, Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, Bessemer Road, London SE5 9PJ, UK; Sussex Community NHS Foundation Trust, Brighton General Hospital, Elm Grove, Brighton, East Sussex
Background: People with advanced illness at home, and their families, rely on 'out-of-hours' services provided by community, primary and specialist palliative care services. Home is commonly expressed as the preferred place to be cared for and die, and an increasing proportion of people are dying at home, but what constitutes 'good' care is poorly understood from the combined perspectives of healthcare professionals and patients and family caregivers.
Objective: To understand the convergence and divergence of the perspectives of healthcare professionals with those of patients and family caregivers, on priorities for home-based palliative care in the 'out-of-hours' period in the UK.
PLoS Comput Biol
September 2025
University of Chinese Academy of Sciences, Beijing, China.
The divergence in folding pathways between RNA co-transcriptional folding (CTF) and free folding (FF) is crucial for understanding dynamic functional regulation of RNAs. Here, we developed a simplified all-atom molecular dynamics framework to systematically compare the folding kinetics of an RNA hairpin (PDB:1ZIH) under CTF and FF conditions. By analyzing over 800 microseconds of simulated trajectory, we found that despite convergence to identical native conformations across CTF simulations (with varied transcription rates) and FF simulations, they exhibit distinct preferences for the folding pathways defined by the order of base-pair formation.
View Article and Find Full Text PDFCurr Biol
July 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address: jinxianliu@gmail
Determination of evolutionary mechanisms underlying innovative traits is crucial for understanding the vast diversity of species and phenotypes. Given their respiratory physiologies, fishes are compelling subjects for evolutionary analysis of the hemoprotein-based oxygen-transport systems. Asian noodlefishes (Osmeriformes: Salangidae) and Antarctic icefishes (Notothenioidei: Channichthyidae) are examples of fish clades that generally do not express myoglobin or hemoglobin.
View Article and Find Full Text PDF