Freeze-dried microalgae of Nannochloropsis oculata improve soybean oil's oxidative stability.

Appl Microbiol Biotechnol

Biotechnology Division, Taiwan Agricultural Research Institute, 41362 Wufeng District, Taichung, Taiwan, Republic of China,

Published: November 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine microalga Nannochloropsis oculata possesses nutrients valuable for human health. In this study, we added freeze-dried N. oculata powder to soybean oil and observed a remarkable inhibition in oil oxidation. The amount of microalgae powder added was positively correlated to the increase in oil stability. The addition of 5.0 % (w/w) microalgae powder increased the oil stability index (OSI) values of soybean oil more than twofold at the tested temperatures 120 and 130 °C. N. oculata contains high levels of both phenolic compounds and α-tocopherols that could be the contributors to such an increase of the OSI. Two methods were conducted to assay the active ingredients released from microalgae: one employed three solvent systems to extract the microalgae and the other was the soybean oil added with microalgae. Analyses of free radical scavenging and reducing power suggested that the phenolic compounds dominated the antioxidation activities in soybean oil when it was infused with the microalgae powder. Our results suggest that N. oculata could potentially be used as an additive in cooking oil to increase the shelf life and nutritional value of the oil and to reduce the production of free radicals from lipid oxidation when the oil is used at high-temperature cooking processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-013-5183-4DOI Listing

Publication Analysis

Top Keywords

soybean oil
16
microalgae powder
12
oil
10
nannochloropsis oculata
8
oil stability
8
phenolic compounds
8
microalgae
6
oculata
5
soybean
5
freeze-dried microalgae
4

Similar Publications

Preparation, characterization, and application of a novel chestnut starch-based bigel as a fat substitute in bread.

Int J Biol Macromol

September 2025

College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (Interna

This study developed a novel self-assembled bigel by combining a chestnut starch (CS) hydrogel with a γ-oryzanol/β-sitosterol (γ-ORY/β-SIT) oleogel. The influence of the hydrogel to oleogel ratio on the macro and micro structures, mechanical properties and thermal stability of the bigels was examined, and its potential as a healthier solid fat substitute was further explored. The results indicated that as the proportion of hydrogel increased (10 %-50 %), all bigels maintained a consistent semi-solid structure without any phase separation.

View Article and Find Full Text PDF

Objective: This study evaluated the effects and mechanisms of antioxidant and anti-inflammatory oils with a high omega-9:omega-6 ratio and a low omega-6:omega-3 ratio on post-extraction healing in rats.

Materials And Methods: A total of 128 Wistar rats were divided into four groups: Sham, Saline, Isolipidic, and Anti-inflammatory/Antioxidant. The animals received one of the following treatments: (1) 0.

View Article and Find Full Text PDF

Bile Acid-based Microcapsule-Like Cocrystals of Phytosterols with Enhanced Solubility, Bioavailability, and Bioactivity.

Mol Pharm

September 2025

Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Phytosterols are a class of natural steroids found in various plants. Commercially available phytosterols (PS) are primarily extracted from the deodorized distillate of soybean oil and consist predominantly of β-sitosterol with smaller amounts of stigmasterol and campesterol. Numerous studies have consistently demonstrated the significant lipid-lowering activity of PS.

View Article and Find Full Text PDF

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF

Introduction: The Covid-19 pandemic has intensified shortages in various pharmaceutical products, notably injectable propofol in lipid emulsion form. Its demand surged sharply due to its critical role in intubating patients with respiratory distress during the pandemic, exposing vulnerabilities in the supply chain for this essential product.

Objectives: This project aims to develop an alternative formulation to commercially available propofol products and to evaluate its stability through a detailed study.

View Article and Find Full Text PDF