98%
921
2 minutes
20
Microglia and astrocytes in the brain play an important role in the development and progression of Alzheimer's disease (AD). Serum amyloid A (SAA) is a major acute-phase protein produced locally in the brain and colocalizes with senile plaques in AD patients. We investigated whether SAA plays a role in the development of AD. The viability of cultured primary microglia and astrocytes was measured by MTT; cell cycle and apoptosis analysis was also conducted. Cultured microglia and astrocytes were stimulated with 1 μM SAA for different periods of time (2, 4, 6, 12 h) or treated with 1 μM SAA with or without 15 min pretreatment of MAPK or PI3K inhibitors. Total RNA was extracted for qPCR analysis. SAA induced morphological changes of primary microglia but not astrocytes. Interestingly, SAA increased the viability of microglia by inhibiting their apoptosis and reduced the viability of astrocytes by inducing G1 cell cycle arresting. SAA treatment increased the mRNA levels of IL-6, TNF-α, IL12p40, IL23p19, and IL-10, with higher potency in microglia than in astrocytes. However, SAA induced more iNOS mRNA in astrocytes than in microglia. SAA induced these cytokines and iNOS expression by activating the PI3K pathway in both glial cells, but selectively activated the JNK pathway in microglia and the NF-κB pathway in astrocytes. These results suggest that SAA can stimulate a different reactive phenotype in microglia and astrocytes, and SAA regulates cell viability differently in these two glial cells in part through the PI3K pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-130818 | DOI Listing |
Mol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El
Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFBrain
September 2025
Central European Institute of Technology Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder characterized by muscle weakness, atrophy and myotonia, with multi-system involvement. Recent studies have highlighted the pathological heterogeneity within the CNS of DM1 patients, particularly significant changes in spinal transcriptome expression and alternative splicing. In this study, we conducted a comprehensive transcriptome analysis of the spinal cord in the muscle-specific DM1 mouse model and their wild-type controls across different life stages: young, adult and old age.
View Article and Find Full Text PDF