98%
921
2 minutes
20
Chromatin modifications have been comprehensively illustrated to play important roles in gene regulation and cell diversity in recent years. Given the rapid accumulation of genome-wide chromatin modification maps across multiple cell types, there is an urgent need for computational methods to analyze multiple maps to reveal combinatorial modification patterns and define functional DNA elements, especially those are specific to cell types or tissues. In this current study, we developed a computational method using differential chromatin modification analysis (dCMA) to identify cell-type-specific genomic regions with distinctive chromatin modifications. We then apply this method to a public data set with modification profiles of nine marks for nine cell types to evaluate its effectiveness. We found cell-type-specific elements unique to each cell type investigated. These unique features show significant cell-type-specific biological relevance and tend to be located within functional regulatory elements. These results demonstrate the power of a differential comparative epigenomic strategy in deciphering the human genome and characterizing cell specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814353 | PMC |
http://dx.doi.org/10.1093/nar/gkt712 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFFront Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.
The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.
View Article and Find Full Text PDFProtoplasma
September 2025
Vavilov Institute of General Genetics RAS, Moscow, Russia.
Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.
View Article and Find Full Text PDFEMBO Rep
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.
View Article and Find Full Text PDF