98%
921
2 minutes
20
Introduction: Retinal Müller cells exhibit the characteristics of retinal progenitor cells, and differentiate into ganglion cells under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to develop a novel protocol to promote the differentiation of retinal Müller cells into ganglion cells and explore the underlying signaling mechanisms.
Methods: Müller cells were isolated and purified from rat retina and induced to dedifferentiate into retinal stem cells. Next the stem cells were transfected with lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP. In addition, the stem cells were transfected with Brn-3b siRNA or Isl-1 siRNA or treated with Notch inhibitor gamma-secretase inhibitor (GSI).
Results: The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of controls. Knockdown of Brn-3b or Isl-1 inhibited, while GSI promoted, the differentiation into retinal ganglion cells. Atoh7 promoted the expression of Brn-3b and Isl-1 but inhibited the expression of Notch1.
Conclusions: Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells by inhibiting Notch signaling, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854761 | PMC |
http://dx.doi.org/10.1186/scrt305 | DOI Listing |
Vision Res
September 2025
LMU Munich, Germany; Bernstein Center for Computational Neuroscience Munich, Germany. Electronic address:
Populations of sensory neurons are not homogeneous. Even neighboring neurons located in the same brain area can process identical stimuli in significantly different ways. Retinal ganglion cells (RGCs) are a prominent example of such heterogeneity - they exhibit diverse properties whose computational role and purpose remain mysterious.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Center for Visual Science, University of Rochester, Rochester, NY, United States.
Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.
View Article and Find Full Text PDFBMC Ophthalmol
September 2025
Department of Ophthalmology, Institute of Medicine, Tribhuvan University, B.P Koirala Lions Centre For Ophthalmic Studies, Kathmandu, Nepal.
Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.
Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.
J Neurosci
September 2025
Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult male and female mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. (S1P receptor 1) and (sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage.
View Article and Find Full Text PDFNeurotoxicology
September 2025
Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:
Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.
View Article and Find Full Text PDF