98%
921
2 minutes
20
An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668 | PMC |
http://dx.doi.org/10.1126/science.1240925 | DOI Listing |
Nature
September 2025
Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.
View Article and Find Full Text PDFNat Commun
September 2025
Guangdong Provincial Key Laboratory of Bioengineering Medicine & National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou, 510632, China.
Genes Dev
September 2025
Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
Enhancer RNAs (eRNAs) are transcribed by during enhancer activation but are typically rapidly degraded in the nucleus. During states of reduced RNA surveillance, however, eRNAs and other similar "noncoding" RNAs (including, e.g.
View Article and Find Full Text PDFGene
September 2025
Institute of Physiology, Medical School, University of Pécs H-7624 Pécs, Hungary. Electronic address:
In this edition of Gene's "Editor's Corner" we summarize the complex interactions of different molecular mechanisms behind the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). The topic is relevant, as the therapeutic options for HIE are limited, it is important to have as much knowledge as possible about the molecular processes underlying the disease. In the recent issue of Gene (Gene 952, 2025, 149363), Wang et al.
View Article and Find Full Text PDFStem Cell Reports
September 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT Oxford, UK. Electronic address:
Neural stem cells (NSCs) in the subventricular zone (SVZ) produce neurons throughout life. However, the epigenetic mechanisms that maintain NSCs and control neurogenesis remain unclear. We previously showed the long non-coding RNA (lncRNA) Paupar and KAP1 transcription co-factor control neuroblastoma cell growth.
View Article and Find Full Text PDF