98%
921
2 minutes
20
We report an efficient colloidal synthesis of KTiOPO4 (KTP) nanocrystals with excellent crystallinity and the direct observation of optical second-harmonic generation (SHG) from discrete KTP nanocrystals in neurons cultured from mammalian brain cortex. Direct internalization and monitoring of these nanoparticles was successfully achieved without limitations from cytotoxicity, bleaching and blinking emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr01251d | DOI Listing |
J Colloid Interface Sci
September 2025
Department of Mechanical Engineering, University College London, London, WC1E 7JE, United Kingdom. Electronic address:
The dynamics of nanoparticle-laden droplets, from dripping to impact, have remained a subject of intense debate due to conflicting reports in the literature. Here, we address this controversy by systematically investigating the breakup, impact, spreading, and splashing behavior of fully characterized additive-free silica nanosuspensions synthesized via the Stöber process. In the absence of additives, we find that nanoparticles exert negligible influence on the fluid viscosity and dynamic behavior of droplets during break up, spreading, and splashing - even in suspensions with a high loading concentration (15 wt.
View Article and Find Full Text PDFInt J Pharm
May 2025
Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, H-6720 Szeged, Hungary. Electronic address:
Pulmonary administration offers a promising needle-free approach for systemic delivery of nonsteroidal anti-inflammatory drugs (NSAIDs), improving bioavailability and reducing required doses. While mannitol and leucine are widely used in inhalation formulations, their potential to enhance systemic drug delivery via the pulmonary route remains largely unexplored. This study utilizes the nanocrystal agglomerates (NCAs) approach to develop an inhalable NSAID formulation, with ketoprofen (KTP) as a model drug.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Northwest Institute for Nonferrous Metal Research, Xi'an, Shannxi 710016, China.
Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
KTiOPO (KTP) nanoparticles (NPs) are potential materials as biolabels for long-term imaging. Optimizing their properties can lead to higher imaging efficiency and lower cytotoxicity and side effects. In this study, these nanoparticles were synthesized using the co-precipitation method and capping agents of oxalic acid and glycine.
View Article and Find Full Text PDFFuture Med Chem
June 2024
Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.