Micromachines (Basel)
October 2019
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (<1 μ m) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE).
View Article and Find Full Text PDFWe investigate bulk second-order nonlinear optical properties of amorphous indium selenide thin films fabricated by thermal evaporation. Such films are shown to exhibit strong and photostable second-harmonic generation (SHG). We report strong thickness dependence of the second-harmonic signals as characterized by the Maker-fringe method.
View Article and Find Full Text PDFIon beam shaping is a novel and powerful tool to engineer nanocomposites with effective three-dimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix.
View Article and Find Full Text PDFWe report an efficient colloidal synthesis of KTiOPO4 (KTP) nanocrystals with excellent crystallinity and the direct observation of optical second-harmonic generation (SHG) from discrete KTP nanocrystals in neurons cultured from mammalian brain cortex. Direct internalization and monitoring of these nanoparticles was successfully achieved without limitations from cytotoxicity, bleaching and blinking emission.
View Article and Find Full Text PDFWe demonstrate that the intensity of the second harmonic (SH) generated in KTiOPO(4) nanoparticles excited with femtosecond laser pulses increases with decreasing duration of the infrared pump pulses. The SH intensity scales, approximately, as the inverse of the laser pulse duration ranging between 13 fs and 200 fs. The SH intensity enhancement requires careful compensation of the high-order spectral phase, being achieved with a genetic algorithm.
View Article and Find Full Text PDF