Skin secretion and shedding is a good source for non-destructive genetic sampling in the Chinese giant salamander (Andrias davidianus).

Z Naturforsch C J Biosci

Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China.

Published: July 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A non-destructive method of collecting samples for DNA analysis of the Chinese giant salamander is described and validated. DNA was extracted from the skin secretion and shedding using a Chelex-based method, and partial 12S rRNA gene sequences were amplified and sequenced. Sequences from skin secretion and shedding were cross-checked against the reported sequences from liver and were found to be identical. This method provides a non-destructive way of carrying out larger studies of the genetics of rare amphibians and may be of general use for genetic-based field studies of amphibians.

Download full-text PDF

Source

Publication Analysis

Top Keywords

skin secretion
12
secretion shedding
12
chinese giant
8
giant salamander
8
shedding good
4
good source
4
source non-destructive
4
non-destructive genetic
4
genetic sampling
4
sampling chinese
4

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

Human YKL-40 antibody alleviates atopic dermatitis-like skin inflammation by inhibiting exosome secretion via the JAK3/STAT6 pathway.

Arch Pharm Res

September 2025

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.

Atopic dermatitis (AD) is an inflammatory skin disease that produces a variety of inflammatory cytokines and chemokines. Chitinase-3-like protein 1 (CHI3L1, YKL-40) significantly contributes to AD-associated inflammatory response and is highly expressed in patients with AD. Therefore, this study elucidated the effects and potential mechanisms of human YKL-40 antibody on AD-affected skin.

View Article and Find Full Text PDF