Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics.

Environ Microbiol

Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.

Published: January 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemolithotrophy is a pervasive metabolic lifestyle for microorganisms in the dark ocean. The SAR324 group of Deltaproteobacteria is ubiquitous in the ocean and has been implicated in sulfur oxidation and carbon fixation, but also contains genomic signatures of C1 utilization and heterotrophy. Here, we reconstructed the metagenome and metatranscriptome of a population of SAR324 from a hydrothermal plume and surrounding waters in the deep Gulf of California to gain insight into the genetic capability and transcriptional dynamics of this enigmatic group. SAR324's metabolism is signified by genes that encode a novel particulate hydrocarbon monooxygenase (pHMO), degradation pathways for corresponding alcohols and short-chain fatty acids, dissimilatory sulfur oxidation, formate dehydrogenase (FDH) and a nitrite reductase (NirK). Transcripts of the pHMO, NirK, FDH and transporters for exogenous carbon and amino acid uptake were highly abundant in plume waters. Sulfur oxidation genes were also abundant in the plume metatranscriptome, indicating SAR324 may also utilize reduced sulfur species in hydrothermal fluids. These results suggest that aspects of SAR324's versatile metabolism (lithotrophy, heterotrophy and alkane oxidation) operate simultaneously, and may explain SAR324's ubiquity in the deep Gulf of California and in the global marine biosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12165DOI Listing

Publication Analysis

Top Keywords

sulfur oxidation
12
deep gulf
8
gulf california
8
abundant plume
8
metabolic flexibility
4
flexibility enigmatic
4
sar324
4
enigmatic sar324
4
sar324 revealed
4
revealed metagenomics
4

Similar Publications

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF

Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.

View Article and Find Full Text PDF