98%
921
2 minutes
20
This paper reports a study of the extraction efficiency for the multiresidue pesticides and chemical pollutants in tea with three methods over three stages. Method 1 adopts the Pang et al. approach: the targets were extracted with 1% acetic acid in acetonitrile and cleaned up with a Cleanert TPT SPE cartridge; Method 2 adopts the QuEChERS approach: the targets were cleaned up dispersively with graphitized carbon and primary-secondary amine (PSA) sorbent; Method 3 adopts the relatively commonly used approach of hydration for solid samples, with tea hydrated before being extracted through salting out with acetonitrile and the cleanup procedures identical to those of Method 1. The three stages comprised two phases of comparative tests on spike recoveries of 201 pesticides and chemical pollutants from different teas and a third phase on determination of the content of the 201 pesticides and chemical pollutants from aged tea samples. In stages I and II, test results of the spike recoveries of 201 pesticides and chemical pollutants demonstrated that 91.4% of the pesticide and chemical pollutant recoveries fell within the range of 70-110%, and 93.2% of the pesticides and chemical pollutants had RSD < 15%, with no marked difference obtained by Method 1 and Method 2 regardless of whether it was green tea or woolong tea, or GC/MS or GC/MS/MS was used for analysis. For pigment removal, Method 1 was superior to Method 2; in terms of easy operation, Method 2 outweighed Method 1. However, Method 3 obtained relatively low recoveries, with 94% of pesticide and chemical pollutant recoveries less than 70%, which proved that Method 3 was not applicable to the determination of multiresidue pesticides and chemical pollutants in tea. Stage III made a comparison of Method 1 and Method 2 for the extraction efficiency of pesticides and chemical pollutants in 165-day-aged samples of green and woolong tea. Test results showed that 94% of the pesticide and chemical pollutant content in the aged tea samples was recovered with Method 1, more than 10% higher than with Method 2 (30-50% higher on average). For green tea, 193 (GC/MS/MS) and 197 (GC/MS) pesticides and chemical pollutants accounted for 96.5% (GC/MS/MS) and 98.0% (GC/MS) with Method 1 higher than with Method 2. For woolong tea, 191 (GC/MS/MS) and 194 (GC/MS) pesticides and chemical pollutants accounted for 95% (GC/MS/MS) and 96% (GC/MS/MS) with Method 1, higher than with Method 2, respectively. In other words, there were definite differences in the test results for aged tea samples between Method 1 and Method 2, which suggests that Method 1 was capable of extracting more residual pesticides and chemical pollutants from the precipitated 165-day-aged tea samples. The reason can be traced to the possibility that Method 1 (high-speed homogenizing) has better extraction efficiency than Method 2 (vortex and oscillation). Therefore, Method 1 was chosen as the sample preparation technique for multiresidue pesticide and chemical pollutant analysis in tea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5740/jaoacint.10-215 | DOI Listing |
Can Vet J
September 2025
Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, Florida 32608, USA (Darby, DeNotta, Gomez); Abu Dhabi Equine and Camel Hospital, Al Wathba, Abu Dhabi, United Arab Emirates (Gomez).
This report describes a case of ivermectin toxicosis in a 4-day-old thoroughbred colt successfully treated with intravenous lipid emulsion (ILE) without complications. This case supports the use of ILE as a safe and effective therapy for the management of lipophilic drug toxicosis in foals. Key clinical message: Ivermectin toxicosis, though rare in equine neonates, can occur following accidental overdose and induces severe neurologic signs.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.
The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.
View Article and Find Full Text PDFEnviron Int
August 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Organochlorine pesticides (OCPs), including hexachlorobenzene (HCB) and pentachloronitrobenzene (PCNB), are highly toxic and persistent pollutants that pose significant ecological and human health risks. Their chemical stability makes them particularly resistant to biodegradation. In this study, we isolated and characterized Cupriavidus nantongensis HB4B5, a novel aerobic bacterium capable of efficiently degrading HCB and PCNB, without the accumulation of toxic intermediates.
View Article and Find Full Text PDFArch Toxicol
September 2025
Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, Oslo, Norway.
The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.
View Article and Find Full Text PDFEnviron Res
September 2025
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail
Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.
View Article and Find Full Text PDF