98%
921
2 minutes
20
The pharmacophore modeling in modern drug research has been applied for both bioactivity profiling and early stage of risk assessment of potential side effects and toxicity due to interactions of drug candidates with antitargets namely P-glycoprotein, hERG, cytochrome P450 and pregnane X-receptor. In this article, an existing state concerning with pharmacophore modeling applied for promiscuous proteins in drug research were updated and reviewed. In an attempt to create new safe medicines faster, the partial overlap of substrate properties of hERG, P-glycoprotein, pregnane X-receptor and cytochrome P450 has to be considered and drug safety has to be dealt on a system level on the off-targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026611313090004 | DOI Listing |
Mol Divers
September 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.
View Article and Find Full Text PDFEur J Med Chem
August 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui, PR China. Electronic address:
Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.
View Article and Find Full Text PDFTurk J Biol
June 2025
Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara, Turkiye.
Background/aim: Tau protein, which is crucial for sustaining the cytoskeletal network by assisting microtubule construction, contributes significantly to the pathophysiology of Alzheimer's disease (AD). The hyperphosphorylation of tau causes it to detach from microtubules (MTs), leading to the formation of neurofibrillary tangles (NFTs) in neurons, which ultimately results in cell death. Thionine (TH), a cationic phenothiazine-structured compound, has been the topic of extensive research due to its interesting physicochemical properties.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.
View Article and Find Full Text PDFBioorg Med Chem
September 2025
Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh 226028, India. Electronic address:
N-methyl-d-aspartate (NMDA) receptors are validated druggable targets for the treatment of Alzheimer's and other associated neurological conditions, particularly in individuals with disabilities. Considering the excitotoxicity associated with NMDA receptors, which leads to neuronal damage, cognitive impairment, and limitations of current therapeutic regimens, better therapeutic candidates are required. One of the validated drug discovery approaches is computer-assisted drug discovery, supplemented by molecular docking, mechanics, and dynamics.
View Article and Find Full Text PDF