98%
921
2 minutes
20
The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682548 | PMC |
http://dx.doi.org/10.1074/jbc.M112.439422 | DOI Listing |
Redox Biol
September 2025
Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec
Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China;
Ethnopharmacological Relevance: White matter injury (WMI) following ischemic stroke represents a critical pathological determinant of persistent neurological impairment, with current therapeutic options remaining limited. Buyang Huanwu Decoction (BYHWD), a time-honored formulation historically deployed in traditional Chinese medicine to address post-stroke sequelae, exhibits documented neuroprotective efficacy; nevertheless, its mechanistic actions governing post-ischemic white matter restoration and remyelination are yet to be fully deciphered.
Aim Of The Study: This study aimed to elucidate whether BYHWD facilitates post-ischemic white matter restoration via TREM2-dependent mechanisms.
Cell Commun Signal
September 2025
Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
Severe acute pancreatitis (SAP) is a potentially life-threatening inflammatory disorder of the exocrine pancreas, characterized by massive cell death, which drives the progression and resolution of the disease. However, little is known about the key regulators in the tissue microenvironment that mediate tissue damage and repair. In this study, we discovered that AXL and MERTK in macrophages are responsible for tissue repair and pancreatic inflammation following SAP.
View Article and Find Full Text PDFBr J Cancer
September 2025
Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
Background: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by neurofibromas, with 5-13% of patients risk developing malignant peripheral nerve sheath tumors (MPNST). Current treatments for MPNST are largely ineffective. AXL, overexpressed in MPNST, is a potential target for Chimeric Antigen Receptor T (CAR-T) cell therapy.
View Article and Find Full Text PDFRSC Med Chem
August 2025
College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 P. R. China
AXL is a promising antitumor target due to its important role in tumor growth, poor survival, metastasis, immunosuppression, and drug resistance. Herein, we employed molecular modeling-assisted structural optimization strategies to design and synthesize a series of penta- or hexa-bicyclo-pyrazolone derivatives as novel AXL inhibitors. Compounds with high enzymatic and cellular potencies against AXL are described.
View Article and Find Full Text PDF