Publications by authors named "Francesca Carlomagno"

Iron is an essential micronutrient that supports cellular pathways such as DNA replication, metabolism, oxygen transport and oxidative phosphorylation via reduction-oxidation reactions. Nevertheless, in specific conditions, iron can be deleterious since it promotes different types of unprogrammed and programmed cell death, including apoptosis, necroptosis, and ferroptosis. In this chapter, we will address the role of iron in promoting cell death and the signaling pathways involved.

View Article and Find Full Text PDF

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of liver disease and a leading contributor to liver-related morbidity and mortality. Currently, no pharmacological approach has demonstrated consistent and long-lasting benefits across all patients. Therefore, identifying new therapeutic targets remains an urgent clinical need.

View Article and Find Full Text PDF

Neoplastic transformation is accompanied by critical changes in cell mechanical properties, including reduced cell elasticity. By leveraging such mechanical flaw, exposure to low intensity therapeutic ultrasounds (LITUS) has been proposed as a tool for selective killing of cancer cells. Here, we have developed dynamic models to address the morpho-mechanical differences between prostate cancer and non-tumoral counterparts and studied the effects of LITUS on cell viability.

View Article and Find Full Text PDF

Cell cycle deregulation is a crucial hallmark of tumorigenesis, leading to uncontrolled cell growth. Overexpression of serine/threonine aurora kinase B (AURKB) is a common feature of human cancer, particularly of the most aggressive subtypes, and it contributes to the alteration of the cell cycle. Thus, AURKB is considered a promising target for cancer treatment; however, no AURKB pharmacological inhibitor has been approved so far.

View Article and Find Full Text PDF

The rearranged during transfection (RET) receptor tyrosine kinase is physiologically stimulated by growth factors belonging to the glial cell line-derived neurotrophic factor family and by the growth differentiation factor-15 cytokine. RET plays a critical role in normal development as well as in various human tumors and developmental disorders. This review focuses on mechanisms of RET signaling and their alterations in human diseases.

View Article and Find Full Text PDF

Purpose: We analyzed the oncogenic potential of RET Δ898-901 mutant and its response to selpercatinib, vandetanib, and cabozantinib in vitro and in a clinical case.

Materials And Methods: A 35-year-old man with a medullary thyroid cancer (MTC) harboring a somatic D898_E901 deletion was sequentially treated with vandetanib, selpercatinib, cabozantinib, and fluorouracil (5-FU)-dacarbazine. Functional study of RET Δ898-901 mutant was performed in HEK-293T, NIH-3T3, and Ba/F3 cells.

View Article and Find Full Text PDF

Iron is essential for deoxyribonucleotides production and for enzymes containing an Fe-S cluster involved in DNA replication and repair. How iron bioavailability and DNA metabolism are coordinated remains poorly understood. NCOA4 protein mediates autophagic degradation of ferritin to maintain iron homeostasis and inhibits DNA replication origin activation via hindrance of the MCM2-7 DNA helicase.

View Article and Find Full Text PDF

Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type () RET and RET, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor.

View Article and Find Full Text PDF

We have recently described Pz-1, a benzimidazole-based type-2 RET and VEGFR2 inhibitor. Based on a kinome scan, here we show that Pz-1 is also a potent (IC < 1 nM) TRKA/B/C inhibitor. Pz-1 potently inhibited proliferation of human cancer cells carrying either RET- or TRKA oncoproteins (IC ~ 1 nM), with a negligible effect against RET- and TRKA-negative cells.

View Article and Find Full Text PDF

Anemia in β-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on β-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for β-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism.

View Article and Find Full Text PDF

Tropomyosin receptor kinase (TRK) represents an attractive oncology target for cancer therapy related to its critical role in cancer formation and progression. NTRK fusions are found to occur in 3.3% of lung cancers, 2.

View Article and Find Full Text PDF

Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

RET receptor tyrosine kinase is a driver oncogene in human cancer. We recently identified the clinical drug candidate Pz-1, which targets RET and VEGFR2. A key metabolite of Pz-1 is its less active demethylated pyrazole analogue.

View Article and Find Full Text PDF

Nuclear receptor coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in a C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue-specific contributions of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich Sv129/J strain. Increased body iron content protects these mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to that of wild-type animals.

View Article and Find Full Text PDF

The ability of pathogens to sequester iron from their host cells and proteins affects their virulence. Moreover, iron is required for various innate host defense mechanisms as well as for acquired immune responses. Therefore, intracellular iron concentration may influence the interplay between pathogens and immune system.

View Article and Find Full Text PDF

Molecular differentiation between benign (follicular thyroid adenoma, FTA) and malignant (follicular thyroid carcinoma, FTC) thyroid neoplasms is challenging. Here, we explored the genome-wide DNA methylation profile of FTA (n.10) and FTC (n.

View Article and Find Full Text PDF

The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.

View Article and Find Full Text PDF

RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice.

View Article and Find Full Text PDF

Aims: Iron overload (IO) is a life-threatening complication of chronic hemolytic disorders such as β-thalassemia. IO results in severe cellular oxidative damage, leading to organ failure. Peroxiredoxin-2 (Prx2), a typical 2-cysteine-(Cys)-peroxiredoxin, is an important component of the cytoprotective system, but its response to IO is still to be fully defined.

View Article and Find Full Text PDF
Article Synopsis
  • - NCOA4 is a cargo receptor that helps degrade ferritin through autophagy, and its absence in knockout mice leads to iron buildup in the liver and spleen, along with elevated transferrin and serum ferritin levels.
  • - Mice lacking NCOA4 showed mild anemia despite high iron levels, and when on an iron-deficient diet, they couldn't release iron from ferritin, resulting in severe anemia and ineffective red blood cell production.
  • - Conversely, feeding these mice an iron-rich diet caused premature death and liver damage, indicating that NCOA4 is crucial for regulating iron levels and supporting proper erythropoiesis in the body.
View Article and Find Full Text PDF

Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen led to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a type II tyrosine kinase inhibitor that is able to bind the "DFG-out" conformation of the kinase.

View Article and Find Full Text PDF

Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop.

View Article and Find Full Text PDF