Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs (miRNAs) have been shown to play key regulatory roles in a range of biological processes, including cell differentiation and development. To identify miRNAs that participate in gonad differentiation, a fundamental and tightly regulated developmental process, we examined miRNA expression profiles at the time of sex determination and during the early fetal differentiation of mouse testes and ovaries using high-throughput sequencing. We identified several miRNAs that were expressed in a sexually dimorphic pattern, including several members of the let-7 family, miR-378, and miR-140-3p. We focused our analysis on the most highly expressed, sexually dimorphic miRNA, miR-140-3p, and found that both miR-140-3p and its more lowly expressed counterpart, the previously annotated guide strand, miR-140-5p, are testis enriched and expressed in testis cords. Analysis of the miR-140-5p/miR-140-3p-null mouse revealed a significant increase in the number of Leydig cells in the developing XY gonad, strongly suggesting an important role for miR-140-5p/miR-140-3p in testis differentiation in mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.113.107607DOI Listing

Publication Analysis

Top Keywords

differentiation mouse
8
expressed sexually
8
sexually dimorphic
8
micrornas-140-5p/140-3p modulate
4
modulate leydig
4
leydig cell
4
cell numbers
4
numbers developing
4
mouse
4
developing mouse
4

Similar Publications

Background: We conducted a transcriptomic analysis to examine cerebellar transcriptional changes in a mouse model of chronic intermittent alcohol exposure.

Methods: We established a mouse model of chronic intermittent alcohol exposure and conducted a cerebellar transcriptomic analysis. After identifying differentially expressed genes, we analyzed pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology.

View Article and Find Full Text PDF

Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Adrenal lipoma formation via PI(3,4,5)P/AKT-dependent transdifferentiation of adrenocortical cells into adipocytes.

Proc Natl Acad Sci U S A

September 2025

Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).

View Article and Find Full Text PDF

Synthesis, preclinical evaluation and clinical application of a novel heterodimeric tracer Ga-pentixafor-c(RGDfK) for PET-CT imaging.

Eur J Nucl Med Mol Imaging

September 2025

Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.

Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.

Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.

View Article and Find Full Text PDF