Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture.

Design: This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction.

Results: We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the injected hUCB-MSCs are differentiating into a chondrocyte-like lineage.

Conclusions: This study demonstrates the abiity of hUBC-MSCs to survive and assume a chondrocyte-like phenotype when injected into the rabbit IVD. These data support the potential for hUBC-MSCs as a cell source for disc repair. Further measures of the host response to the injection and studies in animal models are needed before trials in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238943PMC
http://dx.doi.org/10.1097/PHM.0b013e31825f148aDOI Listing

Publication Analysis

Top Keywords

rabbit ivd
20
cell source
12
source disc
12
disc repair
12
chondrocyte-like phenotype
12
ivd explant
12
ivd explants
12
ivd
9
human umbilical
8
umbilical cord
8

Similar Publications

Biomechanical implications of lumbar intervertebral disc fenestration in rabbits: Comparison of ex vivo and in vivo conditions as an experimental model for chrondrodystrophic dogs with type 1 intervertebral disc disease.

Vet Surg

August 2025

Surgical and Orthopedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Prince of Wales Hospital, Sydney, New South Wales, Australia.

Objective: To compare the effect of intervertebral disc (IVD) fenestration on L3/4 range of motion (ROM) under ex vivo and in vivo conditions in a rabbit model.

Study Design: Randomized experimental study.

Animals: New Zealand White rabbits (ex vivo: n = 18; in vivo: n = 12).

View Article and Find Full Text PDF

Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance in the non-vascularized intervertebral disc (IVD), as well as to assess the drug's biological action in the annulus fibrosus (AF) and nucleus pulposus (NP) IVD cells and tissues. DOX was administered intravenously to rabbits before the isolation of IVDs, in which DOX quantification was performed using a highly sensitive LC-HRMS/MS analytical method.

View Article and Find Full Text PDF

Background: Studies have shown that abnormal stress is a significant inducer of Intervertebral Disc Degeneration (IVDD). Although traction force is commonly used to delay IVDD, its effects on Nucleus Pulposus Cells (NPCs) and their secreted exosomes remain unclear. In addition, this study systematically revealed the relationship between miR-8485 and IVDD for the first time.

View Article and Find Full Text PDF

Intervertebral disc (IVD) disease is typically characterized by the degradation of IVD tissue, secretion of inflammatory and painful factors, and hyperinnervation of the disc. The pro-inflammatory cytokine interleukin-1β (IL-1β) has been regarded as a principal factor in orchestrating disc degeneration. Link N (LN) is a peptide derived from the link protein that has been shown to promote extracellular disc regeneration even in an inflammatory milieu; however, no mechanism(s) has been described for their behaviour to date.

View Article and Find Full Text PDF

Background: Low back pain (LBP) is the leading cause of disability among the elderly, placing significant social and economic burdens on societies globally. A common cause of chronic LBP is lumbar disc degeneration. Previously, we reported that autologous or allogenic fibroblast injections could treat intervertebral disc degeneration (IVDD) in preclinical studies by maintaining disc height and stability through fibrosis.

View Article and Find Full Text PDF