Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To provide a quantitative map of relationships between metabolic traits, genome-wide association studies (GWAS) variants, metabolic syndrome (MetS), and metabolic diseases through factor analysis and structural equation modeling (SEM).

Design And Methods: Cross-sectional data were collected on 1,300 individuals from an eastern Adriatic Croatian island, including 14 anthropometric and biochemical traits, and diagnoses of type 2 diabetes, coronary heart disease, gout, kidney disease, and stroke. MetS was defined based on Adult Treatment Panel III criteria. Forty widely replicated GWAS variants were genotyped. Correlated quantitative traits were reduced through factor analysis; relationships between factors, genetic variants, MetS, and metabolic diseases were determined through SEM.

Results: MetS was associated with obesity (P < 0.0001), dyslipidemia (P < 0.0001), glycated hemoglobin (HbA1c; P = 0.0013), hypertension (P < 0.0001), and hyperuricemia (P < 0.0001). Of metabolic diseases, MetS was associated with gout (P = 0.024), coronary heart disease was associated with HbA1c (P < 0.0001), and type 2 diabetes was associated with HbA1c (P < 0.0001) and obesity (P = 0.008). Eleven GWAS variants predicted metabolic variables, MetS, and metabolic diseases. Notably, rs7100623 in HHEX/IDE was associated with HbA1c (β = 0.03; P < 0.0001) and type 2 diabetes (β = 0.326; P = 0.0002), underscoring substantial impact on glucose control.

Conclusions: Although MetS was associated with obesity, dyslipidemia, glucose control, hypertension, and hyperuricemia, limited ability of MetS to indicate metabolic disease risk is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.20445DOI Listing

Publication Analysis

Top Keywords

gwas variants
16
metabolic diseases
16
mets metabolic
12
type diabetes
12
mets associated
12
associated hba1c
12
metabolic
9
metabolic syndrome
8
metabolic traits
8
mets
8

Similar Publications

Background: There is growing evidence that Sjögren's syndrome (SS) and atherosclerosis (AS) might share underlying immunological and inflammatory processes. Observational data have pointed toward a potential association between SS and a heightened likelihood of developing AS, though the causal direction and specific dynamics of this relationship have not been clearly verified. This Mendelian randomization (MR) investigation opts to investigate potential bidirectional causality between SS and three types of AS: coronary, cerebral, and peripheral.

View Article and Find Full Text PDF

Objective: To examine the associations of LRRK2 p.G2019S, GBA1 p.N409S, polygenic risk scores (PRS), and APOE E4 on PD penetrance, risk, and symptoms.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

Single-cell analysis of Barrett's esophagus and carcinoma reveals cell types conferring risk via genetic predisposition.

Cell Genom

September 2025

Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. Electronic address:

Inherited genetic variants contribute to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), but it is unknown which cell types are involved in this process. We performed single-cell RNA sequencing of BE, EAC, and paired normal tissues and integrated genome-wide association data to determine cell-type-specific genetic risk and cellular processes that contribute to BE and EAC. The analysis reveals that EAC development is driven to a greater extent by local cellular processes than BE development and suggests that one cell type of BE origin (intestinal metaplasia cells) and cellular processes that control the differentiation of columnar cells are of particular relevance for EAC development.

View Article and Find Full Text PDF

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF