Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-organized interfacial instabilities of an ultrathin bilayer confined between a pair of rigid surfaces is explored. The bilayers are classified based on the macroscopic dewetting behaviors of the liquid films sandwiched between a pair of confining surfaces having surface energy higher or lower than the liquid films. Linear and nonlinear analyses employing the governing equations originating from the continuum description together with molecular dynamics (MD) simulations unveil the salient spatiotemporal features of the dewetting process. The study uncovers that, under the destabilizing influence of the intermolecular interactions, the interface of a confined bilayer can deform into interesting embedded and encapsulated patterns with nanoscale periodicity. The continuum and MD simulations collectively show the detailed route to dewetting starting from the formation of holes in the early stage, their growth to achieve equilibrium contact angle at the intermediate phase, and then to evolve into the equilibrium morphologies at the later stage. Examples are shown where the length and the time scales of the simulated nanostructures from both the continuum and MD approaches are found to agree with the same obtained from the linear stability analysis. We also highlight the deviations that are observed in the continuum and MD approaches. The study confirms that the reduced stabilizing interfacial tension at the liquid-liquid interface together with enhanced intermolecular interaction because of the thinness of the layers can be an alternative strategy for pattern miniaturization exploiting the instabilities of a thin confined bilayer. Further, the study shows that use of topographical patterns on the bounding surfaces can impose periodic order to the holes, droplets, columns, and channels, which can find important applications in the diverse areas of nanotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.022405DOI Listing

Publication Analysis

Top Keywords

exploiting instabilities
8
instabilities ultrathin
8
liquid films
8
confined bilayer
8
continuum approaches
8
self-organized pathways
4
pathways nanopatterns
4
nanopatterns exploiting
4
confined
4
ultrathin confined
4

Similar Publications

Intrapatient genomic divergence across multiple primary tumors in young Korean patients.

Korean J Clin Oncol

August 2025

Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.

Purpose: Multiple primary tumors arising in the same individual pose challenges for precision oncology, particularly in the context of hereditary cancer syndromes such as Lynch syndrome. While these tumors may originate from a shared germline predisposition, it remains unclear whether they also share somatic alterations that could be therapeutically exploited. This study aimed to characterize the extent of somatic genomic overlap between synchronous or metachronous gastric and colorectal cancers within young Korean patients.

View Article and Find Full Text PDF

Urbanization cast a shadow over bacterial community in river sediment: Insights from community diversity, assembly processes and network interactions.

J Environ Manage

September 2025

State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing,100875, China. Electronic address:

Rivers reflect natural-anthropogenic interactions, yet how urbanization affects riverine bacterial communities along rural-urban gradients is poorly understood. This study examined bacterial diversity and assembly mechanisms along such a gradient of river sediments. Results showed that bacterial diversity significantly decreased with increasing urban influence.

View Article and Find Full Text PDF

The B cell dilemma: Diversity or fidelity?

DNA Repair (Amst)

August 2025

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory of Genome Diversification & Integrity, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany. Electronic address:

The ability of B lymphocytes to diversify immunoglobulin (Ig) genes is central to the generation of high-affinity, class-switched antibodies and the establishment of effective humoral immunity. This diversification is achieved through three DNA remodeling processes that occur at defined stages of B cell development and maturation: V(D)J recombination, somatic hypermutation (SHM), and class switch recombination (CSR). These reactions all rely on the induction of programmed DNA lesions at Ig genes and their productive resolution by ubiquitous DNA repair pathways.

View Article and Find Full Text PDF

DDX55 safeguards naïve T cell homeostasis by suppressing activation-promoting transposable elements.

Sci Immunol

September 2025

Laboratory of Epigenetics and Immunology, West China Institute of Women and Children's Health, NHC Key Laboratory of Chronobiology, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.

Naïve T cells are maintained in a homeostatic state to preserve a stable T cell pool with diverse T cell receptor (TCR) repertoires, ensuring preparedness for priming. However, the underlying mechanisms controlling naïve T cell homeostasis and priming remain unclear. Leveraging a machine learning-based functional genetic screen, we identified () as the top factor responsible for naïve T cell homeostasis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, with chromosome instability (CIN) present in approximately 85% of cases and associated with poor prognosis. Reduced expression of , a component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, occurs in about one-third of CRCs and correlates with CIN, positioning as a potential therapeutic target. This study employed bioinformatics analyses, small interfering RNA (siRNA) screening, small molecule inhibition, and quantitative imaging (QuantIM) microscopy to identify synthetic lethal interactors of .

View Article and Find Full Text PDF