98%
921
2 minutes
20
The objective of this study was to evaluate the survival of cowpea during bacterial colonization and evaluate the interrelationship of the Bradyrhizobium sp. and plant growth-promoting bacteria (PGPB) as a potential method for optimizing symbiotic performance and cowpea development. Two experiments using the model legume cowpea cv. "IPA 206" were conducted. In the first experiment, cowpea seeds were disinfected, germinated and transferred to sterilized Gibson tubes containing a nitrogen-free nutritive solution. The experimental design was randomized blocks with 24 treatments [Bradyrhizobium sp. (BR 3267); 22 PGPB; absolute control (AC)] with three replicates. In the second experiment, seeds were disinfected, inoculated according to their specific treatment and grown in Leonard jars containing washed and autoclaved sand. The experimental design was randomized blocks with 24 treatments [BR 3267; 22 BR 3267 + PGPB; AC] with three replicates. Scanning electron microscopy demonstrated satisfactory colonization of the roots of inoculated plants. Additionally, synergism between BR 3267 and PGPB in cowpeas was observed, particularly in the BR 3267 + Paenibacillus graminis (MC 04.21) and BR 3267 + P. durus (C 04.50), which showed greater symbiotic performance and promotion of cowpea development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-013-2335-2 | DOI Listing |
J Plant Physiol
September 2025
Department of Plant Physiology, University of Granada, Granada, Spain. Electronic address:
Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, and . Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails.
View Article and Find Full Text PDFParasit Vectors
August 2025
Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
Background: One of the most intriguing and unusual features of trypanosomatids is their mitochondrial DNA, known as kinetoplast DNA (kDNA), which is organized into a network of concatenated circles. The kDNA is contained within the mitochondrial matrix and can exhibit distinct arrangements across different species and during cell differentiation. In addition to kDNA, the kinetoplast contains multiple proteins, including those involved in mitochondrial DNA topology and metabolism, such as the kinetoplast-associated proteins (KAPs).
View Article and Find Full Text PDFBiomedicines
July 2025
Department of Gastroenterology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
: Dysbiosis is implicated in the pathogenesis of ulcerative colitis. Hydrogen has been reported to promote intestinal microbiota diversity and suppress ulcerative colitis progression in mice models. In this study, we investigated changes in the intestinal microbiota, therapeutic effects, and safety of hydrogen inhalation in patients with ulcerative colitis.
View Article and Find Full Text PDF