98%
921
2 minutes
20
In ultrasound elastography, tissue strains are determined by localizing changes in ultrasound echoes during mechanical loading. The technique has been proposed for arthroscopic quantification of the mechanical properties of cartilage. The accuracy of ultrasound elastography depends on the invariability of sound speed in loaded tissue. In unconfined geometry, mechanical compression has been shown to induce variation in sound speed, leading to errors in the determined mechanical properties. This phenomenon has not been confirmed in indentation geometry, the only loading geometry applicable in situ or in vivo. In the present study, ultrasound speed during indentation of articular cartilage was characterized and the effect of variable sound speed on the strain measurements was investigated. Osteochondral samples (n = 7, diameter = 25.4 mm), prepared from visually intact bovine patellae (n = 7), were indented with a plane-ended ultrasound transducer (diameter = 5.6 mm, peak frequency: 8.1 MHz). A sequence of three compression tests (strain-rate = 10%/s, 2700-s relaxation) was applied using the mean strains of 2.2%, 4.5%, and 6.4%. Then, ultrasound speed during the ramp and stress-relaxation phases was determined using the time-of- flight technique. To investigate the role of cartilage structure and composition for sound speed in loaded articular cartilage, a sample-specific fibril-reinforced poroviscoelastic (FRPVE) finite element model was constructed and fitted to experimental mechanical data. Ultrasound speed in articular cartilage decreased significantly during dynamic indentation (p <; 0.05). The magnitude of the decrease in speed during indentation was related to the applied strain. However, the relative error in acoustically determined tissue strain was inversely related to the magnitude of true strain. The modeling results suggested that the compression-related variation in sound speed is controlled by changes in the collagen architecture during dynamic indentation. To conclude, variation in sound speed during dynamic indentation of articular cartilage may lead to significant errors in the values of measured mechanical parameters. Because the relative errors are inversely proportional to applied strain, higher strains should be used to minimize the errors in, e.g., in vivo measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2011.2143 | DOI Listing |
PLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDFCereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFVestn Oftalmol
September 2025
National Medical Research Center for Endocrinology, Moscow, Russia.
Objective: This study presents a comparative analysis of outcomes of lateral orbital wall decompression performed using ultrasonic bone removal with standard and modified techniques.
Material And Methods: The study included 78 patients (109 orbits) with exophthalmos without visual impairment (subgroups 1A and 1B) and with optic neuropathy (ON) due to thyroid eye disease (TED) (subgroups 2A and 2B). Lateral wall decompression (LWD) was performed using ultrasonic bone removal with a modified (=58, patient subgroups 1A and 2A) or standard (=51, subgroups 1B and 2B) technique.
Front Pediatr
August 2025
Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
Bone age assessment is a critical tool for evaluating skeletal maturity in children and adolescents, with implications for growth monitoring and clinical decision-making. While traditional radiographic methods such as the Greulich-Pyle and Tanner-Whitehouse systems remain the gold standard, concerns over ionizing radiation exposure have spurred interest in ultrasound-based alternatives. This mini-review synthesizes current evidence on ultrasound bone age assessment, highlighting its advantages as a radiation-free, non-invasive modality with strong correlations to radiographic standards.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China. Electronic address:
Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.
View Article and Find Full Text PDF