98%
921
2 minutes
20
Antihyperglycemic potential of hyperin at 25 and 50 mg/kg doses for 30 days to streptozotocin induced diabetic rats has been reported. In oral glucose tolerance test, hyperin treated rats showed a significant reduction in blood glucose level after 120 min. It was found that hyperin exhibited dose dependent and significant antihyperglycemic activity in streptozotocin induced diabetic rats which were nearly similar with standard drug glybenclamide. Activities of glucose-6-phosphatase, fructose-1,6-bisphosphatase, glycogen phosphorylase, glycosylated haemoglobin and level of serum urea and creatinine were significantly decreased in hyperin supplemented diabetic rats, dose dependently. Activities of hexokinase and glycogen synthase were increased with augmentation in liver glycogen, insulin and haemoglobin content in hyperin treated diabetic rats. General hematological parameters did not show any significant change in hyperin treated diabetic rats hence it is safe at these doses. Histopathological studies showed significant morphological changes in pancreatic beta-cells of streptozotocin induced diabetic rats. A decreased number of secretory granules of beta-cells were observed in diabetic rats and these pathological abnormalities were normalized after treatment with hyperin and standard drug glybenclamide. Further, hyperin decreases significant in serum total cholesterol, triglyceride, low density lipoprotein, very low density lipoprotein levels coupled with elevation of high density lipoprotein in diabetic rats. These results suggest that hyperin has a pivotal role in blood glucose level in streptozotocin induced hyperglycemia by improving the function of pancreatic islets and increasing glycolysis and decreasing gluconeogenesis.
Download full-text PDF |
Source |
---|
Ultrasound Med Biol
September 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China. Electronic address:
Objective: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, often leading to infection, amputation and poor quality of life. Bone marrow mesenchymal stem cells (BMSCs) have shown promise in treating chronic wounds, but their therapeutic efficacy is limited due to poor survival and low regenerative activity. Low-intensity pulsed ultrasound (LIUS), a non-invasive physical modality, has been shown to enhance the biological behavior of BMSCs.
View Article and Find Full Text PDFTissue Cell
September 2025
Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia. Electronic address:
Chronic wounds, particularly in diabetic patients, are characterized by prolonged inflammation, impaired angiogenesis, and delayed tissue regeneration. To address these challenges, the author developed a bioactive scaffold by incorporating quercetin nanoparticles (Qn) into a chitosan/silk fibroin (ChS) matrix, aiming to accelerate and enhance the wound healing process. Quercetin nanoparticles were synthesized via a solvent displacement method and incorporated into a ChS scaffold using a blending and freeze-drying technique.
View Article and Find Full Text PDFExp Physiol
September 2025
Department of Hepatobiliary Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2025
Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan.
Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.
View Article and Find Full Text PDFJ Ophthalmic Vis Res
September 2025
Faculty of Medicine, Padjadjaran University, Bandung, Indonesia.
Purpose: To assess the effect of empagliflozin on the expression of SGLT-2 and GLUT-1 in the chorioretina of streptozotocin-induced diabetic rats.
Methods: An experimental study was performed on Wistar rats. After a 2-week adaptation period, the rats were allocated to one of four groups.