Article Synopsis

  • Beta amyloid (Aβ) contributes to oxidative stress and inflammation in the brain, leading to cognitive impairment seen in Alzheimer's disease (AD).
  • Salidroside, an active ingredient in Rhodiola crenulata, shows promise as an antioxidant and neuroprotective agent in animal studies.
  • In a study with rats, salidroside treatment improved learning and memory deficits caused by Aβ toxicity, indicating its potential protective effects against AD by reducing oxidative stress and inflammation.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Beta amyloid (Aβ)-induced oxidative stress and chronic inflammation in the brain are considered to be responsible for the pathogenesis of Alzheimer's disease (AD). Salidroside, the major active ingredient of Rhodiola crenulata, has been previously shown to have antioxidant and neuroprotective properties in vitro. The present study aimed to investigate the protective effects of salidroside on Aβ-induced cognitive impairment in vivo. Rats received intrahippocampal Aβ1-40 injection were treated with salidroside (25, 50 and 75 mg/kg p.o.) once daily for 21 days. Learning and memory performance were assessed in the Morris water maze (days 17-21). After behavioral testing, the rats were sacrificed and hippocampi were removed for biochemical assays (reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), acetylcholinesterase (AChE), acetylcholine (ACh)) and molecular biological analysis (Cu/Zn-SOD, Mn-SOD, GPx, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear factor κB (NF-κB), inhibitor of κB-alpha (IκBα), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), receptor for advanced glycation end products (RAGE)). Our results confirmed that Aβ1-40 peptide caused learning and memory deficits in rats. Further analysis demonstrated that the NADPH oxidase-mediated oxidative stress was increased in Aβ1-40-injected rats. Furthermore, NF-κB was demonstrated to be activated in Aβ1-40-injected rats, and the COX-2, iNOS and RAGE expression were also induced by Aβ1-40. However, salidroside (50 and 75 mg/kg p.o.) reversed all the former alterations. Thus, the study indicates that salidroside may have a protective effect against AD via modulating oxidative stress and inflammatory mediators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2013.01.037DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
modulating oxidative
8
stress inflammatory
8
inflammatory mediators
8
salidroside mg/kg
8
learning memory
8
aβ1-40-injected rats
8
salidroside
6
rats
5
salidroside attenuates
4

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF