98%
921
2 minutes
20
GeO2/Ge/C anode material synthesized using a simple method involving simultaneous carbon coating and reduction by acetylene gas is composed of nanosized GeO2/Ge particles coated by a thin layer of carbon, which is also interconnected between neighboring particles to form clusters of up to 30 μm. The GeO2/Ge/C composite shows a high capacity of up to 1860 mAh/g and 1680 mAh/g at 1 C (2.1 A/g) and 10 C rates, respectively. This good electrochemical performance is related to the fact that the elemental germanium nanoparticles present in the composite increases the reversibility of the conversion reaction of GeO2. These factors have been found through investigating and comparing GeO2/Ge/C, GeO2/C, nanosized GeO2, and bulk GeO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl304716e | DOI Listing |
ACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFLangmuir
September 2025
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
The study addresses the critical issue of sepsis diagnosis, a life-threatening condition triggered by the body's immune response to infection that leads to mortality. Current diagnostic methods rely on the time-consuming assessment of multiple biomarkers by a series of tests, leading to delayed treatment. Here, we report a platform for developing a point-of-care (POC) device utilizing electrochemical immunosensors for the dual and rapid detection of sepsis biomarkers: Procalcitonin (PCT), Interleukin-6 (IL-6), and C-reactive protein (CRP) as host markers and lipopolysaccharide (LPS) as a pathogen marker.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Biochemistry, Auburn University Auburn Alabama 36849 USA
Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.
View Article and Find Full Text PDF