Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-013-3072-zDOI Listing

Publication Analysis

Top Keywords

anaerobic conditions
24
aerobic anaerobic
20
biofilm
8
activated sludge
8
sludge aerobic
8
biofilm development
8
biofilm formation
8
plate count
8
scanning electron
8
oxygen demand
8

Similar Publications

Babesia bigemina, a tick-borne protozoan parasite, is one of the main causative agents of bovine babesiosis, a disease with significant economic impact on the cattle industry. One of the key enzymes involved in the parasite's metabolism is lactate dehydrogenase (LDH), which plays an essential role in the anaerobic glycolytic pathway by catalysing the conversion of pyruvate to lactate. In this study, B.

View Article and Find Full Text PDF

Inhibition study of model compounds from sludge-derived hydrothermal liquefaction aqueous product on anaerobic digestion.

J Hazard Mater

September 2025

UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada; ICREA - Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, Barcelona, Spain; GEMMA - Group of Environmental Engineering and Microbiology, Dep

This study systematically evaluated the inhibitory effects of model compounds from sludge-derived hydrothermal liquefaction aqueous phase (HTLaq) on anaerobic digestion (AD) at both mesophilic and thermophilic temperatures using a total of 1008 anaerobic toxicity assays (ATA). Twenty representative compounds of suspected inhibitors, including nitrogen-containing heterocyclics like pyridines, pyrrolidinones, and pyrazines, as well as phenols and ketones, were tested at varying dosages (25, 50, 100, 200, 400, and 800 mg/L) to assess their impact on volatile fatty acids (VFA) generation and consumption, methane production, substrate utilization, and inhibitory compound degradation. Results demonstrated that thermophilic AD is generally more susceptible to inhibition than mesophilic AD, both in terms of acute and chronic toxicity.

View Article and Find Full Text PDF

Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.

View Article and Find Full Text PDF

In vitro simulation of rumen fermentation is critical for improving feed efficiency, assessing dietary interventions, and supporting methane mitigation strategies in ruminant production systems. However, existing fermentation platforms are often expensive, technically complex, or poorly suited for long-term microbial viability under near-rumen conditions-especially in resource-limited settings. This study presents the development and validation of a modular, low-cost engineered to replicate key physiological parameters of the rumen, including temperature control (39-40 °C), continuous buffering via artificial saliva infusion, anaerobic regulation, and simulated motility through mixing pumps.

View Article and Find Full Text PDF

Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.

View Article and Find Full Text PDF