Evolution of uncontrolled proliferation and the angiogenic switch in cancer.

Math Biosci Eng

Department of Life Sciences, Scottsdale Community College, 9000 E. Chaparral Rd., Scottsdale, AZ 85256, United States.

Published: October 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The major goal of evolutionary oncology is to explain how malignant traits evolve to become cancer ``hallmarks." One such hallmark---the angiogenic switch---is difficult to explain for the same reason altruism is difficult to explain. An angiogenic clone is vulnerable to ``cheater" lineages that shunt energy from angiogenesis to proliferation, allowing the cheater to outcompete cooperative phenotypes in the environment built by the cooperators. Here we show that cell- or clone-level selection is sufficient to explain the angiogenic switch, but not because of direct selection on angiogenesis factor secretion---angiogenic potential evolves only as a pleiotropic afterthought. We study a multiscale mathematical model that includes an energy management system in an evolving angiogenic tumor. The energy management model makes the counterintuitive prediction that ATP concentration in resting cells increases with increasing ATP hydrolysis, as seen in other theoretical and empirical studies. As a result, increasing ATP hydrolysis for angiogenesis can increase proliferative potential, which is the trait directly under selection. Intriguingly, this energy dynamic allows an evolutionary stable angiogenesis strategy, but this strategy is an evolutionary repeller, leading to runaway selection for extreme vascular hypo- or hyperplasia. The former case yields a tumor-on-a-tumor, or hypertumor, as predicted in other studies, and the latter case may explain vascular hyperplasia evident in certain tumor types.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2012.9.843DOI Listing

Publication Analysis

Top Keywords

angiogenic switch
8
difficult explain
8
explain angiogenic
8
energy management
8
increasing atp
8
atp hydrolysis
8
angiogenic
5
explain
5
evolution uncontrolled
4
uncontrolled proliferation
4

Similar Publications

Peritoneal Dialysis (PD) requires a healthy and functional peritoneal membrane for adequate ultrafiltration and fluid balance, making it a vital treatment for patients with end-stage renal disease (ESRD). The spectrum of PD-associated peritoneal fibrosis encompasses a diverse range of collective mechanisms: peritoneal fibrogenesis, epithelial to mesenchymal transition (EMT), peritonitis, angiogenesis, sub-mesothelial immune cells infiltration, and collagen deposition in the sub-mesothelial compact zone of the membrane that accompany deteriorating membrane function. In this narrative review, we summarize the repertoire of current knowledge about the structure, function, and pathophysiology of the peritoneal membrane, focusing on biomolecular mechanisms and signalling pathways that potentiate the development and progression of peritoneal fibrosis.

View Article and Find Full Text PDF

Aims: Calcific aortic valve disease is the most common valvular heart disease characterized by an inflammatory response in the leaflets followed by fibro-calcific remodelling of valvular interstitial cells (VICs). Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for CAVD, however the role of metabolism in driving Lp(a)-induced inflammation remains largely elusive. Therefore, we aim to investigate the role of Lp(a) in driving inflammatory and metabolic changes in VICs and examine how alterations in cellular metabolism can alter their inflammatory phenotype.

View Article and Find Full Text PDF

Background: Preeclampsia is amultisystem disorder involving in inflammatory responses and metabolic dysfunction of maternal-fetal circulation. Recently, researchers found it threatens renal health of offspring in adulthood. Growing evidence indicated chronic kidney disease is associated with glomeruli deficiencies during intrauterine development.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and treatment resistance. This review provides a comprehensive overview of canonical and non-canonical NF-κB signaling pathways and their molecular mechanisms in GBM, with a focus on their regulation in glioma stem-like cells (GSCs), interactions with key oncogenic factors (including STAT3, FOSL1, and TRPM7), and roles in maintaining tumor stemness, metabolic adaptation, and angiogenesis.

View Article and Find Full Text PDF

We evaluated the efficacy of switching to intravitreal injection of faricimab (IVF) in patients with aflibercept-refractory neovascular age-related macular degeneration (nAMD) over 2 years of follow-up. We retrospectively reviewed 47 consecutive eyes of 45 Japanese patients with nAMD who switched from aflibercept to faricimab. Thirty-one eyes of 30 Japanese patients were included in this study.

View Article and Find Full Text PDF