Aberrant innate immune sensing leads to the rapid progression of idiopathic pulmonary fibrosis.

Fibrogenesis Tissue Repair

Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, USA.

Published: May 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel approaches are needed to define subgroups of patients with Idiopathic pulmonary fibrosis (IPF) at risk for acute exacerbations and/or accelerated progression of this generally fatal disease. Progression of disease is an integral component of IPF with a median survival of 3 to 5 years. Conversely, a high degree of variability in disease progression has been reported among series. The characteristics of patients at risk of earlier death predominantly rely on baseline HRCT appearance, but this concept that has been challenged. Disparate physiological approaches have also been taken to identify patients at risk of mortality, with varying results. We hypothesized that the rapid decline in lung function in IPF may be a consequence of an abnormal host response to pathogen-associated molecular patterns (PAMPs), leading to aberrant activation in fibroblasts and fibrosis. Analysis of upper and lower lobe surgical lung biopsies (SLBs) indicated that TLR9, a hypomethylated CpG DNA receptor, is prominently expressed at the transcript and protein level, most notably in biopsies from rapidly progressive IPF patients. Surprisingly, fibroblasts appeared to be a major cellular source of TLR9 expression in IPF biopsies from this group of progressors. Further, CpG DNA promoted profibrotic cytokine and chemokine synthesis in isolated human IPF fibroblasts, most markedly again in cells from patients with the rapidly progressive IPF phenotype, in a TLR9-dependent manner. Finally, CpG DNA exacerbated fibrosis in an in vivo model initiated by the adoptive transfer of primary fibroblasts derived from patients who exhibited rapidly progressing fibrosis. Together, these data suggested that TLR9 activation via hypomethylated DNA might be an important mechanism in promoting fibrosis particularly in patients prone to rapidly progressing IPF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368762PMC
http://dx.doi.org/10.1186/1755-1536-5-S1-S3DOI Listing

Publication Analysis

Top Keywords

cpg dna
12
idiopathic pulmonary
8
pulmonary fibrosis
8
ipf
8
disease progression
8
patients risk
8
rapidly progressive
8
progressive ipf
8
rapidly progressing
8
patients
7

Similar Publications

Novel alternative transcripts of TLR8 and TLR9 reveal evolutionary pressure to conserve protein structure.

Biochimie

September 2025

Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.

TLR8 and TLR9 are innate immune receptors belonging to the TLR family that are essential for viral recognition and early immune activation. Their dysfunction is linked to increased susceptibility to infections. TLR8 detects viral single- and double-stranded RNA, while TLR9 recognizes viral DNA molecules with CpG motifs.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Aging is the main risk factor for Parkinson's disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson's Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage.

View Article and Find Full Text PDF

This study aims to investigate the role of Toll-like receptor 9 (TLR9), a deoxyribose nucleic acid (DNA) sensor, in astrocyte activation and its contribution to multiple sclerosis (MS) pathogenesis. Additionally, we examined whether TLR9 and the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathways act synergistically to promote astrocyte inflammatory activation and whether combined inhibition of both pathways offers superior protective effects. Human astrocytes were treated with unmethylated Cytosine-phosphorothioate-guanine (CpG) oligodeoxynucleotides at varying concentrations.

View Article and Find Full Text PDF

Background: Acute hyperinsulinemia may directly affect blood cells. In this study a hyperinsulinemic-euglycemic clamp (HEC) and multiomics methods were used to explore the epigenetic regulation by hyperinsulinemia in blood cells.

Methods: To assess short-term changes in DNA methylation (within 2 hours), blood samples were collected from five non-diabetic adults before and after HEC.

View Article and Find Full Text PDF