Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite recent achievements to reduce surface quenching in NaYF(4):Yb,Er nanocrystals, a complete understanding of how the nanocrystal size affects the brightness of upconversion luminescence is still incomplete. Here we investigated upconversion luminescence of Yb,Er-doped nanocrystals in a broad range of sizes from 6 nm to 45 nm (cubic or hexagonal phases), displaying an increasing red-to-green luminescence intensity ratio and reduced luminescence lifetimes with decreasing size. By analyzing the upconversion process with a set of rate equations, we found that their asymptotic analytic solutions explain lower decay rates of red compared to green upconversion luminescence. Furthermore, we quantified the effect of the surface on luminescence lifetime in a model where nanocrystal emitters are divided between the near-surface and inside regions of each nanocrystal. We clarify the influence of the four nonradiative recombination mechanisms (intrinsic phonon modes, vibration energy of surface ligands, solvent-mediated quenching, and surface defects) on the decay rates for different-size nanocrystals, and find that the defect density dominates decay rates for small (below 15 nm) nanocrystals. Our results indicate that a defect-reduction strategy is a key step in producing small upconversion nanocrystals with increased brightness for a variety of bioimaging and biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr32482bDOI Listing

Publication Analysis

Top Keywords

upconversion luminescence
16
decay rates
12
nayf4yber nanocrystals
8
nanocrystal size
8
upconversion
6
nanocrystals
6
luminescence
6
luminescence tunable
4
tunable lifetime
4
lifetime nayf4yber
4

Similar Publications

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

Two birds with one stone: Versatile lanthanide-doped core-shell-shell nanoparticles with enhanced red upconversion for nanothermometry and MR imaging.

J Colloid Interface Sci

September 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy

Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.

View Article and Find Full Text PDF

The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.

View Article and Find Full Text PDF

Upconverting nano-paste in 3D-printed phone camera setup for soil phyto-iron sensing.

Anal Chim Acta

November 2025

Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:

Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).

View Article and Find Full Text PDF

Rare-earth ions (REIs), especially trivalent lanthanides (Ln ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML).

View Article and Find Full Text PDF