A generic force field for protein coarse-grained molecular dynamics simulation.

Int J Mol Sci

State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China.

Published: November 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509591PMC
http://dx.doi.org/10.3390/ijms131114451DOI Listing

Publication Analysis

Top Keywords

force field
12
molecular dynamics
8
amino acid
8
root square
8
protein
6
generic force
4
field protein
4
protein coarse-grained
4
coarse-grained molecular
4
dynamics simulation
4

Similar Publications

Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.

Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.

View Article and Find Full Text PDF

Star-like Cluster SMg: A Binary Dianion Global Minimum Featuring a Planar Pentacoordinate Sulfur.

Inorg Chem

September 2025

The Key Laboratory of the Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi 030006, People's Republic of China.

For over half a century, clusters exhibiting unconventional bonding have captivated researchers due to their unique electronic characteristics. While most elements in the periodic table demonstrate this remarkable structural feature, sulfur has been notably absent from known global minima with a planar pentacoordinate center. Herein, we report the first binary dianion cluster, SMg, featuring a planar pentacoordinate sulfur (ppS) atom.

View Article and Find Full Text PDF

Accurately modeling volume-dependent properties of water remains a challenge for density functional theory (DFT), with widely used functionals failing to reproduce key features of the water density isobar, including its shape, density, and temperature of the density maximum. Here, we compare the performance of the RPBE-D3 and vdW-DF-cx functionals using replica exchange molecular dynamics (MD) driven by machine-learned force fields. Our simulations reveal that vdW-DF-cx predicts the water density more accurately than RPBE-D3 and reproduces the isobar closely between 307 and 340 K.

View Article and Find Full Text PDF

Ball Milling Approaches for Biomass-Derived Nanocarbon in Advanced Sustainable Applications.

Chem Rec

September 2025

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.

The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.

View Article and Find Full Text PDF

Aspergillus has become the second most common causative agent of invasive fungal infections and is the leading cause of death from fungal infections. English-language publications ranging from 1975 to 2022 collected from the Web of Science Core Collection database were analyzed visually using VOSviewer, R package Bibliometrix, Scimago graphic, Gephi, Pajek, and Microsoft Excel 365. Literature search using the advanced search function in WoSCC with the search formula "TS=(Aspergillus).

View Article and Find Full Text PDF