98%
921
2 minutes
20
Substitutions of trans-Na(Him)[Mo(2)O(4)(ox)(2)(H(2)O)(2)]·H(2)O (1) and trans-(Him)(2)[Mo(2)O(4)(ox)(2)(H(2)O)(2)] (2) with imidazole result in the formation of the mixed-ligand molybdenum complexes cis-Na(2)[Mo(2)O(4)(ox)(2)(im)(2)]·4.5H(2)O (3), cis-K(2)[Mo(2)O(4)(ox)(2)(im)(2)]·3H(2)O (4), respectively (H(2)ox = oxalic acid; im = imidazole). Further reduction of cis-K(2)[Mo(2)O(4)(ox)(2)(im)(2)]·3H(2)O (4) gives a trinuclear molybdenum(IV) complex K(Him)[Mo(3)O(4)(ox)(3)(im)(3)]·3H(2)O (5), which contains an incomplete cubane cluster [Mo(IV)(3)O(4)](4+). Two novel trinuclear mixed-valence imidazole compounds [Mo(3)O(8)(im)(4)](im)·H(2)O (6) and [Mo(3)O(8)(im)(4)]·H(2)O (7) were obtained by the reduction of (Him)(4)[Mo(8)O(26)(im)(2)] (8). Both 6 and 7 contain a novel Mo(VI)O(4)(Mo(V)(2)O(4)) center, where the [Mo(V)(2)O(4)](2+) unit is linked by [Mo(VI)O(4)](2-) anion. The Mo-Mo bond distances in 1-7 decrease with the decrease of oxidation state of molybdenum. Solid and solution NMR spectra show that imidazole molybdenum compounds 6-8 fully dissociate in solution, where solvated imidazole and imidazolium groups in 6 and 8 could be served as internal references in their solid (13)C NMR spectra. Furthermore, mixed-ligand molybdenum species 3 and 4 are stable in water. Stabilities of 3 and 4 in solution may be attributed to the strong coordination of bidentate oxalate and the formation of hydrogen bond. Dimers 2 and 4 display quasi-reversible redox process, while trimer 6 is irreversible. Bond valence calculations for 1-8 are consistent with their oxidation states of molybdenum atoms. Calculation of the oxidation state in recent structure of iron molybdenum cofactor [MoFe(7)S(9)C(R-homocit)] (FeMo-co) is 3.318.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt31566a | DOI Listing |
Inorg Chem
March 2022
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Ligand functionalization has been thoroughly leveraged to alter the properties of paddlewheel-based coordination cages where, in the case of ligand-terminated cages, functional groups are positioned on the periphery of synthesized cages. While these groups can be used to optimize solubility, porosity, crystal packing, thermal stability toward desolvation, reactivity, or optical activity, optimization of multiple properties can be challenging given their interconnected nature. For example, installation of functional groups to increase the solubility of porous cages typically has the effect of decreasing their porosity and stability toward thermal activation.
View Article and Find Full Text PDFInorg Chem
March 2022
Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO(L)(MeOH)] () and [MoO(L)(EtOH)] (), and two mixed-ligand dimeric MoO species, [{MoO(L)}(μ-4,4'-bipy)] (-), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT.
View Article and Find Full Text PDFChem Sci
June 2015
Department of Chemistry , Graduate School of Engineering Science , Osaka University, CREST , Toyonaka , Osaka 560-8531 , Japan . Email: ; Email:
We developed a hydrodehalogenation reaction of polyhaloalkanes catalyzed by paddlewheel dimolybdenum complexes in combination with 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) as a non-toxic H-atom source as well as a salt-free reductant. A mixed-ligated dimolybdenum complex Mo(OAc)[CH(NAr)] (, Ar = 4-MeOCH) having two acetates and two amidinates exhibited high catalytic activity in the presence of BuNCl, in which [ BuN][Mo{CH(NAr)}Cl] (), derived by treating with ClSiMe and BuNCl, was generated as a catalytically-active species in the hydrodehalogenation. All reaction processes, oxidation and reduction of the dimolybdenum complex, were clarified by control experiments, and the oxidized product, [ BuN][Mo{CH(NAr)}Cl] (), was characterized by EPR and X-ray diffraction studies.
View Article and Find Full Text PDFDalton Trans
February 2013
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Substitutions of trans-Na(Him)[Mo(2)O(4)(ox)(2)(H(2)O)(2)]·H(2)O (1) and trans-(Him)(2)[Mo(2)O(4)(ox)(2)(H(2)O)(2)] (2) with imidazole result in the formation of the mixed-ligand molybdenum complexes cis-Na(2)[Mo(2)O(4)(ox)(2)(im)(2)]·4.5H(2)O (3), cis-K(2)[Mo(2)O(4)(ox)(2)(im)(2)]·3H(2)O (4), respectively (H(2)ox = oxalic acid; im = imidazole). Further reduction of cis-K(2)[Mo(2)O(4)(ox)(2)(im)(2)]·3H(2)O (4) gives a trinuclear molybdenum(IV) complex K(Him)[Mo(3)O(4)(ox)(3)(im)(3)]·3H(2)O (5), which contains an incomplete cubane cluster [Mo(IV)(3)O(4)](4+).
View Article and Find Full Text PDFInorg Chem
September 2011
University of Toronto, 3359 Mississauga Road N, Mississauga, Ontario, Canada L5L 1C6.