Identification of the dimer interface of a bacterial Ca(2+)/H(+) antiporter.

Biochemistry

Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47906, USA.

Published: December 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Members of the calcium/cation antiporter superfamily, including the cardiac sodium/calcium exchangers, are secondary active transporters that play an essential role in cellular Ca(2+) homeostasis. A notable feature of this group of transporters is the high levels of sequence similarity in relatively short sequences constituting the functionally important α-1 and α-2 regions in contrast to relatively lower degrees of similarity in the extended adjoining sequences. This suggests a similar structure and function of core transport machinery but possible differences in topology and/or oligomerization, a topic that has not been adequately addressed. Here we present the first example of purification of a bacterial member of this superfamily (CAX(CK31)) and analyze its quaternary structure. Purification of CAX(CK31) required the presence of a choline headgroup-containing detergent or lipid to yield stable preparations of the monomeric transporter. H(+)-driven Ca(2+) transport was demonstrated by reconstituting purified CAX(CK31) into liposomes. Dimeric CAX(CK31) could be isolated by manipulation of detergent micelles. Dimer formation was shown to be dependent on micelle composition as well as protein concentration. Furthermore, we establish that CAX(CK31) forms dimers in the membrane by analysis of cross-linked proteins. Using a dimeric homology model derived from the monomeric structure of the archaeal NCX homologue (Protein Data Bank entry 3V5U ), we introduced cysteine residues and through cross-linking experiments established the role of transmembrane helices 2 and 6 in the putative dimer interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571656PMC
http://dx.doi.org/10.1021/bi3012109DOI Listing

Publication Analysis

Top Keywords

dimer interface
8
caxck31
5
identification dimer
4
interface bacterial
4
bacterial ca2+/h+
4
ca2+/h+ antiporter
4
antiporter members
4
members calcium/cation
4
calcium/cation antiporter
4
antiporter superfamily
4

Similar Publications

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Comprehensive in silico analyses of keratin heterodimerisation.

Eur J Cell Biol

August 2025

Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany. Electronic address:

Keratins are the largest and most diverse group of intermediate filament proteins, providing structural integrity and mechanical strength to epithelial cells. Although their assembly as heterodimers is well established, the specific pairing preferences and molecular basis of keratin dimerisation remain largely unknown. Here, we employ a high-throughput computational pipeline that integrates AlphaFold Multimer (AFM) modelling, VoroIF-GNN interaction interface quality assessment, interaction energy calculations and structural comparisons with experimentally solved structures to systematically investigate keratin heterodimerisation and to provide a guideline for further analysis of intermediate filament assembly.

View Article and Find Full Text PDF

Iron homeostasis is essential for the virulence of the opportunistic fungal pathogen . The cytosolic monothiol glutaredoxin GrxD was recently shown to play a critical role in iron metabolism via regulation of iron-sulfur (Fe-S) binding iron-responsive transcription factors and interaction with components of the cytosolic Fe-S cluster assembly pathway. Interestingly, the putative copper-binding metallothionein CmtA was also identified as a binding partner for GrxD; however, the metal-binding properties of both proteins and the nature of their interactions were unclear.

View Article and Find Full Text PDF

Stabilization of Native Protein-Protein Interactions with Molecular Glues: A 14-3-3 Case Study.

Acc Chem Res

September 2025

Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, United States.

ConspectusProtein-protein interactions (PPIs) play a key role in homeostasis and are often dysregulated in disease. PPIs were traditionally considered "undruggable" due to their flat surfaces and disordered domains. Recently, the identification of PPI stabilizers, or molecular glues (MGs), compounds that bind cooperatively to PPI interfaces, has provided a new direction for the field.

View Article and Find Full Text PDF

Emergence of drug resistance in Mycobacterium tuberculosis (Mtb) calls for newer drugs and drug targets. Essential proteins such as DNA polymerase (DNAP) processivity factor, also called sliding clamp (DnaN), are indispensable for bacterial survival, and are excellent drug targets. Here, we constructed a dnaN-conditional knockout in Mycobacterium smegmatis (MsmΔdnaN) and were able to successfully complement it with Mtb DnaN (DnaN).

View Article and Find Full Text PDF