Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An optimal electrode position and interventricular (VV) delay in cardiac resynchronization therapy (CRT) improves its success. However, the precise quantification of cardiac dyssynchrony and magnitude of resynchronization achieved by biventricular (BiV) pacing therapy with mechanical optimization strategies based on computational models remain scant. The maximum circumferential uniformity ratio estimate (CURE) was used here as mechanical optimization index, which was automatically computed for 6 different electrode positions based on a three-dimensional electromechanical canine model of heart failure (HF) caused by complete left bundle branch block (CLBBB). VV delay timing was adjusted accordingly. The heart excitation propagation was simulated with a monodomain model. The quantification of mechanical intra- and interventricular asynchrony was then investigated with eight-node isoparametric element method. The results showed that (i) the optimal pacing location from maximal CURE of 0.8516 was found at the left ventricle (LV) lateral wall near the equator site with a VV delay of 60 ms, in accordance with current clinical studies, (ii) compared with electrical optimization strategy of E(RMS), the LV synchronous contraction and the hemodynamics improved more with mechanical optimization strategy. Therefore, measures of mechanical dyssynchrony improve the sensitivity and specificity of predicting responders more. The model was subject to validation in future clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480673PMC
http://dx.doi.org/10.1155/2012/948781DOI Listing

Publication Analysis

Top Keywords

mechanical optimization
16
optimization strategy
12
cardiac resynchronization
8
resynchronization therapy
8
clinical studies
8
optimization
5
mechanical
5
study mechanical
4
strategy cardiac
4
therapy based
4

Similar Publications

Background: Optimal oral care is essential in preventing non-ventilator hospital-associated pneumonia and enhancing patient comfort. However, nurses' clinical oral care practices for patients not on mechanical ventilation in the intensive care unit are both underreported and understudied.

Aim: To explore intensive care nurses' clinical oral care practices for patients not on mechanical ventilation in intensive care units.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the evolution of jump and sprint force-production capacities with maturation in young soccer players. One hundred sixteen young elite male soccer players aged 11-17 years were assigned to six different groups according to their maturity status. The force-velocity (F-V) profiles in jumping and sprinting performances were compared among groups.

View Article and Find Full Text PDF

The development of mechanically robust, biocompatible, and biodegradable hydrogels remains a significant challenge for biomedical applications involving load-bearing soft tissues. Herein, a tubular lignin-derived hydrogel is engineered to assess its physicochemical, mechanical, and biological properties. Kraft and organosolv lignin are systematically compared at varying crosslinker concentrations to determine their effect on pore morphology, swelling behavior, and mechanical performance.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Drug Delivery and Binding in a Tissue with Irregularly Shaped Binding Regions.

Pharm Res

September 2025

Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.

Objective: A fundamental understanding of drug diffusion and binding processes is critical for the design and optimization of a wide variety of drug delivery devices. Most of the past literature assume binding to occur uniformly throughout the tissue, or, at best, in specific layers of a multilayer tissue. However, in many realistic scenarios, such as in cancer-targeting drugs, drug binding occurs in discrete irregularly shaped regions.

View Article and Find Full Text PDF