98%
921
2 minutes
20
Background: Toll-like receptor 2 (TLR2) is important to host recognition of invading gram-positive microbes. In goats, these microbes can cause serious mastitis, anthrax, tetanus, and other problems. Transgenic goats constitutively over-expressing TLR2 in many tissues serve as a suitable model for the study of the role of TLR2 over-expression in bacterial clearance.
Results: Capra hircus TLR2 over-expression vector (p3S-LoxP-TLR2) was used to generate transgenic goats by egg microinjection. The integration efficiency was 8.57%. Real-time PCR and immunohistochemical results confirmed that the goats over-expressing the TLR2 gene (Tg) expressed more TLR2 than wild-type goats (WT). Monocyte-macrophages from the bloodstreams of transgenic goats were stimulated with synthetic bacterial lipoprotein (Pam3CSK4) and by the promotion of interleukin-6 (IL-6) and IL-10 expression in vitro. The oxidative damage was significantly reduced, and lysozyme (LZM) secretion was found to be up-regulated. Ear tissue samples from transgenic goats that had been stimulated with Pam3CSK4 via hypodermic injection showed that transgenic individuals can undergo the inflammation response very quickly.
Conclusions: Over-expression of TLR2 was found to decrease radical damage to host cells through low-level production of NO and MDA and to promote the clearance of invasive bacteria by up-regulating lysozyme secretion and filtration of inflammatory cells to the infected site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560201 | PMC |
http://dx.doi.org/10.1186/1746-6148-8-196 | DOI Listing |
Funct Integr Genomics
August 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
CRISPR/Cas9 technology is an efficient tool for site-specific livestock gene editing. However, to minimize potential disruption of host genome function, exogenous genes should be integrated into well-characterized genomic loci, such as H11 or Rosa26, which have been empirically validated for stable transgene expression. This study established a multi-dimensional assessment system to evaluate the biological applicability of the H11 locus and the widely used Rosa26 targeting platform as sites for targeted integration of exogenous genes in goats.
View Article and Find Full Text PDFProtein Expr Purif
August 2025
Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan. Electronic address:
A number of methods are used to produce recombinant proteins, and animal bioreactors have emerged as transgenic systems. Animal bioreactors have the potential to reduce production costs and improve efficiency, thereby providing recombinant proteins that are important for therapeutic applications. Various species, such as goats, cattle, and rabbits, have been genetically modified to serve as bioreactors.
View Article and Find Full Text PDFGlycobiology
August 2025
Department of Biological Sciences and Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria.
The H11 antigens, located on the intestinal microvilli of Haemonchus contortus, comprise a group of homologous aminopeptidases essential for the parasite's digestion of blood meals. Native H11 proteins are promising vaccine antigens, capable of eliciting robust protective immunity against H. contortus in sheep and goats.
View Article and Find Full Text PDFVet Res
March 2025
Instituto de Agrobiotecnología (CSIC-Gobierno de Navarra), Mutilva, Navarra, Spain.
Small ruminant lentiviruses (SRLV) cause multisystemic chronic inflammatory disease and significant economic losses in sheep and goats worldwide. However, no vaccines or therapies are currently available. In this study, a recombinant Sendai virus (SeV) vector encoding the SRLV gag-P25 gene (rSeV-GFP-P25) from the EV1 strain was generated using In-FUSION cloning and rescued using the SeV reverse genetic system.
View Article and Find Full Text PDFFront Genome Ed
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors.
View Article and Find Full Text PDF