98%
921
2 minutes
20
The position of light-emitting molecules can be identified using interferometric approaches. Standard schemes utilize constructive interference to obtain a sectioned area of interest with high detection efficiency. The examination of organic light-emitting diodes (OLED) removes the common constraint of low light levels and enables a more generalized analysis. The OLED emitters are located in the front of a metal mirror, giving rise to an approximate two-wave fringe pattern in the far field. It is demonstrated theoretically and experimentally that positions around the field nodes enable the extraction of emitter distribution details within an electroluminescent layer of only 10 nm thickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.37.004134 | DOI Listing |
Chemphyschem
September 2025
Institute of Physics, Polish Academy of Sciences, PL-02-668, Warsaw, Poland.
B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India.
Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFChem Sci
August 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
Circularly polarized organic light-emitting diodes (CP-OLEDs) exhibiting circularly polarized electroluminescence (CP-EL) properties hold significant promise for future display technologies. However, enhancing the electroluminescence dissymmetry factor ( ) remains a substantial challenge. Herein, ultrastrong CP-EL emissions are achieved using a liquid crystal (LC)-functionalization strategy under the regulation of chiral co-assembly.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
The development of high-performance near-ultraviolet organic light-emitting diodes (NUV-OLEDs) remains challenging due to their intrinsic wide-bandgap characteristics. Therefore, this study fully exploits the weak electron-accepting characteristics of the PPI group, combined with its high photoluminescence quantum yield (PLQY) and excellent thermal stability. Through a precise molecular structure modulation strategy involving direct introduction of electron-donating diphenylamine groups into the side phenyl ring and systematic integration of donor/acceptor units with tailored electronic properties into the main backbone, effective control of excited-state characteristics and their spatial distribution was successfully achieved.
View Article and Find Full Text PDF