Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1038/488284aDOI Listing

Publication Analysis

Top Keywords

cancer exploiting
4
exploiting collateral
4
collateral damage
4
cancer
1
collateral
1
damage
1

Similar Publications

Viral warfare: unleashing engineered oncolytic viruses to outsmart cancer's defenses.

Front Immunol

September 2025

Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.

Oncolytic virotherapy (OVT) has emerged as a promising and innovative cancer treatment strategy that harnesses engineered viruses to selectively infect, replicate within, and destroys malignant cells while sparing healthy tissues. Beyond direct oncolysis, oncolytic viruses (OVs) exploit tumor-specific metabolic, antiviral, and immunological vulnerabilities to reshape the tumor microenvironment (TME) and initiate systemic antitumor immunity. Despite promising results from preclinical and clinical studies, several barriers, including inefficient intratumoral virus delivery, immune clearance, and tumor heterogeneity, continue to limit the therapeutic advantages of OVT as a standalone modality and hindered its clinical success.

View Article and Find Full Text PDF

Exploring the effect of copper on the bioactivity of 8-quinolines: an and study.

Dalton Trans

September 2025

Biomedical Inorganic Chemistry Lab, Department of Chemical Sciences, University of Catania, v.le A. Doria 6, 95125, Catania, Italy.

Current anticancer therapy is challenged by the adaptability and resistance of tumor cells as well as limited drug selectivity that causes severe side effects. The scientific community maintains high interest in metal-based chemotherapeutic agents due to their unique interactions with cancer cells, potentially overcoming resistance mechanisms and exploiting the physiopathology of the tumour tissues. Copper, in particular, plays a dual role in cancer, both facilitating tumor progression and triggering cuproptosis, a copper-induced cell death mechanism.

View Article and Find Full Text PDF

The molecular blueprint of targeted radionuclide therapy.

Nat Rev Clin Oncol

September 2025

German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.

Targeted radionuclide therapy (TRT) is a cutting-edge treatment approach in oncology that combines the molecular precision of targeted agents with the effect of radiotherapy to selectively deliver cytotoxic radiation to cancer cells. Research efforts from the past few decades have led to a diverse molecular landscape of TRT and have provided lessons for further rational development of targeted radiopharmaceuticals and expansion of the clinical applications of this treatment modality. In this Review, we discuss TRT in the context of therapeutic approaches currently available in oncology, describe the broad range of established and emerging targets for TRT including innovative approaches to exploit vulnerabilities presented by the tumour microenvironment, and address the challenges for clinical translation and molecular optimization.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

A Diselenide-Based Triple-Responsive Nanogel for Tumor Chemo-Photoimmunotherapy.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.

In this study, we successfully developed a diselenide-based, triple-responsive intelligent nanogel, IR780@BEAP, for lung cancer therapy. Exploiting the elevated levels of reactive oxygen species (ROS) and glutathione (GSH) in the tumor microenvironment (TME), a ROS/GSH dual-responsive diselenide cross-linker (DSe5) was synthesized and used to cross-link betulin (BE) with polysaccharide (AP) while coloading the photosensitizer IR780. The resulting nanogel, IR780@BEAP, exhibited an appropriate particle size (137.

View Article and Find Full Text PDF