Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Allele-specific methylation of the endogenous H19 imprinting control region (ICR) is established in sperm. We previously showed that the paternal H19 ICR in yeast artificial chromosome (YAC) transgenic mice (TgM) was preferentially methylated in somatic cells, but not in germ cells, suggesting that differential methylation could be established after fertilization. In this report, we discovered small RNA molecules in growing oocytes, the nucleotide sequences of which mapped to the H19 ICR. To test if these small RNA sequences play a role in the establishment of differential methylation, we deleted the sequences from the H19 ICR DNA and generated YAC TgM. In somatic cells of these mice, methylation imprinting of the transgene was normally established. In addition, the mutant fragment was not methylated in sperm and eggs. These data demonstrate that sequences in the H19 ICR that correspond to the small RNA sequences are dispensable for methylation imprinting in YAC TgM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2012.07.062DOI Listing

Publication Analysis

Top Keywords

h19 icr
20
small rna
16
sequences h19
12
methylation imprinting
12
dispensable methylation
8
imprinting yac
8
yac transgenic
8
transgenic mice
8
somatic cells
8
differential methylation
8

Similar Publications

Igf2 adult-specific skeletal muscle enhancer activity revealed in mice with intergenic CTCF boundary deletion.

PLoS Genet

August 2025

University of Pennsylvania Perelman School of Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America.

Precise, monoallelic expression of imprinted genes is governed by cis regulatory elements called imprinting control regions (ICRs) and enhancer-promoter (E-P) interactions shaped by local chromatin architecture. The Igf2/H19 locus employs allele-specific CTCF binding at the ICR to instruct enhancer accessibility to maternal H19 and paternal Igf2 promoters. Here, we investigate the CTCF-bound centrally conserved domain (CCD), intergenic to H19 and Igf2, and an adjacent widely expressed lncRNA.

View Article and Find Full Text PDF

Long non-coding RNA in IgA nephropathy: a comprehensive review.

Ren Fail

December 2025

Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Immunoglobulin A nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally, almost half of patients progress to end-stage kidney disease (ESKD). However, the precise pathogenesis of IgAN remains elusive. Long non-coding RNAs (lncRNAs), non-protein-coding transcripts that regulate gene expression, have been found to exhibit distinct expression patterns in various disease states.

View Article and Find Full Text PDF

Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.

View Article and Find Full Text PDF

An EED/PRC2-H19 Loop Regulates Cerebellar Development.

Adv Sci (Weinh)

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

EED (embryonic ectoderm development) is a core subunit of the polycomb repressive complex 2 (PRC2), which senses the trimethylation of histone H3 lysine 27 (H3K27). However, its biological function in cerebellar development remains unknown. Here, we show that EED deletion from neural stem cells (NSCs) or cerebellar granule cell progenitors (GCPs) leads to reduced GCPs proliferation, cell death, cerebellar hypoplasia, and motor deficits in mice.

View Article and Find Full Text PDF

Background: Intrauterine growth restriction (IUGR) is associated with adverse metabolic outcomes during adulthood. Histone modifications and changes in DNA methylation-affected genes are important for fetal development. This study aimed to confirm the epigenetic mechanisms in IUGR.

View Article and Find Full Text PDF