98%
921
2 minutes
20
Poly(allylamine)-stabilized spherical and rod-shaped copper nanoparticles were synthesized by a simple chemical reaction. The synthesis was performed by the reduction of copper (II) salt with hydrazine in aqueous solution under atmospheric air in the presence of poly(allylamine) (PAAm) capping agent. Besides providing long-term stability to the nanoparticles by preventing particle agglomeration, polymer capping agents such as PAAm make the particles dispersible in aqueous solution. Noteworthy advantages of the synthetic method include its production of water dispersible nanoparticles at room temperature without inert atmosphere, making the synthesis more environmentally friendly. The resulting copper nanoparticles were investigated by UV-Vis spectroscopy and transmission electron microscopy. The authors found that several factors, including the amount of NaOH solution, concentration of PAAm, and reaction time, affect the composition, size, morphology, and degree of agglomeration of the resulting copper nanoparticles. The amount of NaOH in the reaction is crucial for the synthesis to result in either pure copper or copper oxide-containing copper nanoparticles as well as to produce the highest possible yield of copper nanoparticles. In addition, the reaction time and concentration of PAAm play key roles in controlling the size and shape of the nanoparticles, respectively. The resulting colloidal copper nanoparticles exhibit large surface-enhanced Raman spectroscopy (SERS) signals.
Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFAnalyst
September 2025
Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.
Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDF