98%
921
2 minutes
20
Purpose: To accelerate the acquisition of three-dimensional (3D) high-resolution cardiovascular molecular MRI by using Compressed Sensing (CS) reconstruction.
Materials And Methods: Molecular MRI is an emerging technique for the early assessment of cardiovascular disease. This technique provides excellent soft tissue differentiation at a molecular and cellular level using target-specific contrast agents (CAs). However, long scan times are required for 3D molecular MRI. Parallel imaging can be used to speed-up these acquisitions, but hardware considerations limit the maximum acceleration factor. This limitation is important in small-animal studies, where single-coils are commonly used. Here we exploit the sparse nature of molecular MR images, which are characterized by localized and high-contrast biological target-enhancement, to accelerate data acquisition. CS was applied to detect: (a) venous thromboembolism and (b) coronary injury and aortic vessel wall in single- and multiple-coils acquisitions, respectively.
Results: Retrospective undersampling showed good overall image quality with accelerations up to four for thrombus and aortic images, and up to three for coronary artery images. For higher acceleration factors, features with high CA uptake were still well recovered while low affinity targets were less preserved with increased CS undersampling artifacts. Prospective undersampling was performed in an aortic image with acceleration of two, showing good contrast and well-defined tissue boundaries in the contrast-enhanced regions.
Conclusion: We demonstrate the successful application of CS to preclinical molecular MR with target specific gadolinium-based CAs using retrospective (accelerations up to four) and prospective (acceleration of two) undersampling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.23763 | DOI Listing |
ACS Nano
September 2025
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
The Heart Institute, Department of Pediatrics, University of Tennessee Health and Science Center, Memphis, TN 38103, USA.
Left ventricular noncompaction (LVNC), also called noncompaction cardiomyopathy (NCM), is a myocardial disease that affects children and adults. Morphological features of LVNC include a noncompacted spongiform myocardium due to the presence of excessive trabeculations and deep recesses between prominent trabeculae. Incidence and prevalence rates of this disease remain contentious due to varying clinical phenotypes, ranging from an asymptomatic phenotype to fulminant heart failure, cardiac dysrhythmias, and sudden death.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
Background: The causal relationship between migraines and patent foramen ovale (PFO) remains controversial, and a major unresolved question is how to define migraines attributable to PFO. Thus, this study aimed to determine if brain lesions could be a potential indicator of PFO-related migraines.
Methods: Consecutive migraine patients from 2017 to 2019 who underwent transthoracic echocardiography or transcranial Doppler examination with an agitated saline contrast injection were assessed for right-to-left shunts.
Radiol Case Rep
November 2025
Department of Neurosurgery, Hitachi General Hospital, 2-1-1 Jonancho, Hitachi 317-0077, Japan.
Epithelioid glioblastoma (eGBM) is a rare subtype of glioblastoma, generally associated with a poorer prognosis than conventional GBM despite maximum resection and standard chemoradiotherapy. Here, we report a case of a 78-year-old man who presented with left hemiplegia and a well-circumscribed right frontal lobe lesion on imaging, initially suspected to be a metastatic brain tumor. Surgical resection revealed a firm, clearly demarcated mass.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Turku PET Centre, University of Turku, Turku, Finland.
Aims: Obesity is associated with increased insulin-stimulated brain glucose uptake (BGU) which is opposite to decreased GU observed in peripheral tissues. Increased BGU was shown to be reversed by weight loss and exercise training, but the mechanisms remain unknown. We investigated whether neuroinflammation (TSPO availability) and brain activity drive the obesity-associated increase in BGU and whether this increase is reversed by exercise training.
View Article and Find Full Text PDF