Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sulfatide (HSO(3)-3-galactosylceramide), which enriched in lipid rafts of plasma membranes in various epithelial cell lines, is a critical component of host cells for effective production of influenza A virus. However, the function of sulfatide in other virus infections targeting epithelial cells remains unknown. In this study, the effect of sulfatide on infection of human parainfluenza virus type 3 (hPIV3) was demonstrated by using genetically produced sulfatide-enriched cells and by treatment of hPIV3-infected cells with anti-sulfatide monoclonal antibody (GS-5) as well as by addition of sulfatide to the cells. hPIV3 was found to bind to sulfatide in a virus overlay assay and a solid-phase binding assay. Genetic expression of sulfatide in COS-7 cells defective in sulfatide suppressed initial hPIV3 infection and formation of multinucleate virus-infected cells. Treatment of virus-infected LLC-MK2 cells with GS-5 promoted formation of multinucleate cells. In contrast, exogenous addition of sulfatide to hPIV3-infected COS-7 cells and cells expressing the hPIV3-hemagglutinin-neuraminidase (HN) gene and fusion (F) gene conspicuously reduced the formation of multinucleate cells. The results suggest that sulfatide negatively regulates the fusion process of hPIV3, possibly through interaction with HN or F glycoprotein on the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvs080DOI Listing

Publication Analysis

Top Keywords

cells
12
formation multinucleate
12
sulfatide
10
sulfatide negatively
8
negatively regulates
8
regulates fusion
8
fusion process
8
human parainfluenza
8
parainfluenza virus
8
virus type
8

Similar Publications

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

Maintenance of organismal function requires tightly regulated biomolecular communication. However, with aging, communication deteriorates, thereby disrupting effective information flow. Using information theory applied to skeletal muscle single cell RNA-seq data from young, middle-aged, and aged animals, we quantified the loss of communication efficiency over time.

View Article and Find Full Text PDF