Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ni@Fe(2)O(3) heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe(2)O(3) heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr12121bDOI Listing

Publication Analysis

Top Keywords

ni@fe₂o₃ heterodimers
4
heterodimers controlled
4
controlled synthesis
4
synthesis magnetically
4
magnetically recyclable
4
recyclable catalytic
4
catalytic application
4
application dehalogenation
4
dehalogenation reactions
4
reactions ni@fe2o3
4

Similar Publications

Oncogenic role of the SLC7A13-SLC3A1 cystine transporter in human luminal breast cancer and its cryo-EM structure.

Protein Cell

September 2025

Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.

View Article and Find Full Text PDF

WNT7A and WNT7B, secreted by neural cells, are essential regulators of developmental brain angiogenesis and blood-brain barrier integrity. In brain endothelial cells, WNT7 proteins activate β-catenin signaling through the ligand-specific receptor complex GPR124-RECK and classical WNT receptors of the FZD and LRP families. Previous studies suggested that WNT7 isoforms assemble a GPR124-RECK-FZD-LRP5/6 multi-receptor complex for signaling.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.

View Article and Find Full Text PDF

Fractionation and biological evaluation of passion fruit Pectins: HG and RG-I backbone ratios are associated with TLR2-1 interaction and signaling.

Carbohydr Polym

November 2025

Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP (Res

Passion fruit mesocarp is rich in pectin, and high-temperature/pressure modification of this pectin has been shown to yield bioactive fragments with anticancer potential. To clarify the structure-function relationship of passion fruit pectins, we purified native and modified pectins using two fractionation methods. Comprehensive chemical characterization revealed molecular weight as the primary difference between fractions, along with varying proportions of homogalacturonan (HG) and rhamnogalacturonan-I (RG-I).

View Article and Find Full Text PDF

Comprehensive in silico analyses of keratin heterodimerisation.

Eur J Cell Biol

August 2025

Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany. Electronic address:

Keratins are the largest and most diverse group of intermediate filament proteins, providing structural integrity and mechanical strength to epithelial cells. Although their assembly as heterodimers is well established, the specific pairing preferences and molecular basis of keratin dimerisation remain largely unknown. Here, we employ a high-throughput computational pipeline that integrates AlphaFold Multimer (AFM) modelling, VoroIF-GNN interaction interface quality assessment, interaction energy calculations and structural comparisons with experimentally solved structures to systematically investigate keratin heterodimerisation and to provide a guideline for further analysis of intermediate filament assembly.

View Article and Find Full Text PDF