Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to compare the effect of vanadium absorbed by Coprinus comatus (VACC) with inorganic vanadium (vanadium nitrate, IV) in preventing diabetes-related osteopenia in streptozotocin-diabetic rats. Sixty Wistar female rats used were divided into four groups: (1) normal rats (control), (2) diabetic rats, (3) diabetic rats treated with VACC, and (4) diabetic rats treated with vanadium nitrate. A standardized type 1-like diabetes model was induced by injection of streptozotocin. After the rats were treated orally with VACC and IV respectively, plasma glucose, body weights, micro-CT, biomechanical testing, and histomorphometry were examined. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. Treatments were performed over a 12-week period. Both VACC and IV have a positive effect on plasma glucose and body weights of STZ-induced diabetic rats. However, treatment with IV only caused a 39.6 % decrease in glucose levels and a 14.6 % increase in body weights, whereas VACC decreased plasma glucose and increased body weights by up to 52.2 and 24.5 %, respectively. At the same time, VACC significantly improved trabecular microstructure and mechanical strength, while IV did not exhibit desirable such effects. Also, bone Ca and bone P were not significantly increased by IV. These results indicated that both VACC and IV have hypoglycemic activity on diabetic rats, while IV did not improve bone properties. In conclusion, this study suggests that VACC improves diabetes-related bone dysfunction, primarily by improving the diabetic states.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-012-9437-2DOI Listing

Publication Analysis

Top Keywords

diabetic rats
20
body weights
16
rats treated
12
plasma glucose
12
rats
10
vanadium absorbed
8
absorbed coprinus
8
coprinus comatus
8
inorganic vanadium
8
streptozotocin-diabetic rats
8

Similar Publications

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

Exploring the hypoglycemic potential of HuGLP-1-loaded bilosomes in controlling type 2 diabetes mellitus.

Ther Deliv

September 2025

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India.

Background: Type 2 diabetes mellitus (T2DM) is the most devastating disease and it necessitates therapeutic intervention for its effective management. Human Glucagon-like peptide-1 (HuGLP-1) is the potential candidate in the treatment of T2DM; however, it limits its utilization owing to its solubility and stability issues.

Aims: The current investigation aims to develop HuGLP-1-loaded bilosomes as a novel strategy for managing T2DM.

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

One of the most prevalent metabolic diseases in recent years, type 2 diabetes is now one of the top causes of death globally and a significant risk factor for cardiovascular diseases. Therefore, the goal of this study is to investigate the impact of HIIT exercises on the levels of specific proteins associated with mitochondrial biogenesis and apoptosis in the heart tissue of male Wistar rats with type 2 diabetes. Animals in diabetic groups were given a high-fat diet and an intraperitoneal injection of STZ to cause diabetes.

View Article and Find Full Text PDF