98%
921
2 minutes
20
IE1 is the principal transcriptional regulator of the baculoviruses. Like multifunctional transcription factors of other large DNA viruses, IE1 is an essential, site-specific DNA-binding phosphoprotein that activates virus gene expression and promotes genome replication. To define the poorly understood mechanisms by which IE1 achieves its diverse functions, we identified IE1 domains that contribute to productive infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), the baculovirus prototype. Site-directed mutagenesis revealed that the N-terminal 23 residues of IE1 are required for origin-specific DNA replication and AcMNPV propagation, but not for DNA-binding-dependent transcriptional activation. Within this defined replication domain, we identified an invariant TPXR/H motif that resembles a consensus cyclin-dependent kinase phosphorylation site. Amino acid substitutions of potential phosphorylation sites within or near this motif caused loss of IE1-mediated DNA replication activity. Remarkably, substitution of the single threonine (residue 15) within the TPXR/H motif caused complete loss of AcMNPV multiplication. The replication domain was required for IE1 phosphorylation. It was also sufficient for conferring phosphorylation of a heterologous protein. Importantly, IE1 hyperphosphorylation coincided exclusively with AcMNPV DNA replication. The temporal regulation of IE1 phosphorylation and the essential nature of the TPXR/H motif suggest that phosphorylation critically alters and possibly activates DNA replication activity of IE1 during infection. The striking conservation of the TPXR/H motif among IE1 proteins further suggests that this molecular switch may be a common mechanism by which the alphabaculoviruses coordinate DNA replication and gene expression by using a single regulator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393540 | PMC |
http://dx.doi.org/10.1128/JVI.00373-12 | DOI Listing |
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFRSC Chem Biol
September 2025
Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA.
The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.
View Article and Find Full Text PDFEnviron Epigenet
May 2025
Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, 38000 Grenoble, France.
An increasing number of epigenome-wide association studies report tobacco smoking-associated DNA methylation levels. However, comprehensive replication studies remain scarce, particularly in placenta, despite their crucial interest in such a large-scale context. Using DNA methylation data from the EPIC array of 341 new placentas (85 smokers, 219 non-smokers, and 37 former smokers) from the EDEN cohort, we used a candidate approach to replicate maternal smoking-associated CpGs and regions previously identified using the 450K array, and an exploratory approach to discover new associations within EPIC-specific CpGs.
View Article and Find Full Text PDFChron Respir Dis
September 2025
Department of Pulmonology, II.Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Case presentationDescription of a patient with a progressive destructive lung disease resembling pleuroparenchymal fibroelastosis, liver cirrhosis and bone marrow changes. Genetic workup identified a rare heterozygous coding variant in the (telomerase reverse transcriptase) gene c.472 C>T; p.
View Article and Find Full Text PDFEMBO Rep
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.
View Article and Find Full Text PDF