98%
921
2 minutes
20
Glioblastoma multiforme is an aggressive brain tumor with a poor prognosis. The glioblastoma stem-like cells (GSCs) represent a rare fraction of human glioblastoma cells with the capacity for multi-lineage differentiation, self-renewal and exact recapitulation of the original tumor. Interestingly, GSCs are more radioresistant compared with other tumor cells. In addition, the remarkable radioresistance of GSCs has been known to promote radiotherapy failure and therefore is associated with a significantly higher risk of a local tumor recurrence. Moreover, the hyperactive cell cycle checkpoint kinase (Chk) 1 and 2 play a pivotal role in the DNA damage response including radiation and chemical therapy. Based on aforementioned, we hypothesized that knockdown of Chk1 or Chk2 might confer radiosensitivity on GSCs and thereby increases the efficiency of radiotherapy. In this study, we knocked down the expression of Chk1 or Chk2 in human GSCs using lentivirus-delivered short hairpin RNA (shRNA) to examine its effect on the radiosensitivity. After radiation, the apoptosis rate and the cell cycle of GSCs were measured with Flow Cytometry. Compared with control GSCs (apoptosis, 7.82 ± 0.38%; G2/M arrest, 60.20 ± 1.28%), Chk1 knockdown in GSCs increased the apoptosis rate (37.87 ± 0.32%) and decreased the degree of the G2/M arrest (22.37 ± 2.01%). In contrast, the radiosensitivity was not enhanced by Chk2 knockdown in GSCs. These results suggest that depletion of Chk1 may improve the radio-sensitivity of GSCs via inducing cell apoptosis. In summary, the therapy targeting Chk1 gene in the GSCs may be a novel way to treat glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1620/tjem.226.267 | DOI Listing |
Adv Healthc Mater
September 2025
School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA.
The prognosis of glioblastoma multiforme (GBM) remains dismal, despite standard treatment regimens. A key challenge in treating GBM is the persistence of glioma stem cells (GSCs) within the perivascular niche (PVN) - a protective tumor microenvironment (TME) that is often associated with inadequate drug penetration. Current preclinical models do not capture complexity of the human TME, particularly the vasculature and niche-specific interactions that drive GBM progression.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.
View Article and Find Full Text PDFCurr Mol Med
August 2025
Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences, OJHA Campus, Karachi, Pakistan.
Introduction: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis, primarily due to therapy resistance mediated by CD133+ glioblastoma stem cells (GSCs). The BCL3 gene contributes to this resistance and is potentially regulated by Carbonic Anhydrase II (CA II). Additionally, BCL3 enhances β-catenin-mediated transcription, promoting tumor growth.
View Article and Find Full Text PDFTissue homeostasis is dependent on precise coordination between endocrine organs in response to changes in organism physiology. Secreted circulating factors from adipocytes (called adipokines) regulate the behavior of stem cell lineages in peripheral tissues in multiple organisms. In addition to their endocrine roles, adipocytes store and secrete amino acid storage proteins throughout development.
View Article and Find Full Text PDFJ Transl Med
September 2025
Department of Neurosurgery, The First Hospital of China Medical University, No. 115 Nanjing North Street, Shenyang, 110001, China.
Glioma represents the most prevalent primary tumors of the central nervous system, originating from glial cells. Cancer stem cells have the ability to extensively proliferate, self-renew, and form colonies, which contribute to tumorigenesis. Studies have found a population of cells within glioblastoma exhibiting characteristics similar to those of cancer cells, termed glioma stem cells (GSCs).
View Article and Find Full Text PDF