Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Increasing the safety and the efficacy of existing HIV vaccines is one of the strategies that could help to promote the development of a vaccine for human use. We developed a HIV DNA vaccine (Δ4-SHIVKU2) that has been shown to induce potent polyfunctional HIV-specific T cell responses following a single dose immunization of mice and macaques. Δ4-SHIVKU2 also induced protection when immunized macaques were challenged with homologous pathogenic viruses. In the present study, our aim was to examine whether a chimeric HIV DNA vaccine (CAL-Δ4-SHIVKU2) whose genome is driven by the LTR of the goat lentivirus, caprine arthritis encephalitis (CAEV) expresses efficiently the vaccine antigens and induces potent immune responses in animal models for HIV vaccine. Data of radioimmunoprecipitation assays clearly show that this chimeric genome drives efficient expression of all HIV antigens in the construct. In addition, evaluation of the p24 Gag protein in the supernatant of HEK-293-T cells transfected in parallel with Δ4-SHIVKU2 and CAL-Δ4-SHIVKU2 showed no difference suggesting that these two LTRs are inducing equally the expression of the viral genes. Immunization of mice and macaques using our single dose immunization regimen resulted in induction of similar IFN-γ ELISPOT responses in Δ4-SHIVKU2- and CAL-Δ4-SHIVKU2-treated mice. Similar profiles of T cell responses were also detected both in mice and macaques when multiparametric flow cytometry analyses were performed. Since CAEV LTR is not dependent of Tat to drive viral gene expression and is not functional for integration with HIV integrase, this new vector increases the safety and efficacy of our vaccine vectors and vaccination strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341415PMC
http://dx.doi.org/10.1016/j.vaccine.2012.02.050DOI Listing

Publication Analysis

Top Keywords

mice macaques
16
dna vaccine
12
caprine arthritis
8
arthritis encephalitis
8
safety efficacy
8
hiv dna
8
cell responses
8
single dose
8
dose immunization
8
immunization mice
8

Similar Publications

Although gut microbiota and lipid metabolites have been suggested to be closely associated with type 2 diabetes mellitus (T2DM), the interactions between gut microbiota, lipid metabolites, and the host in T2DM development remains unclear. Rhesus macaques may be the best animal model to investigate these relationships given their spontaneous development of T2DM. We identified eight spontaneous T2DM macaques and conducted a comprehensive study investigating the relationships using multi-omics sequencing technology.

View Article and Find Full Text PDF

Angelman syndrome patient-derived neuron screen leads to clinical ASO rugonersen targeting UBE3A-ATS with long-lasting effect in monkeys.

Nucleic Acids Res

August 2025

Roche Pharma Research and Early Development, Neuroscience and Rare Disease discovery and translational area, Roche Innovation Center Basel, Basel 4070, Switzerland.

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal ubiquitin E3 ligase UBE3A, with no available treatment. Restoring UBE3A by downregulating the paternally cis-acting long noncoding antisense transcript (UBE3A-ATS) is a potentially disease modifying strategy. However, developing molecules targeting human UBE3A-ATS is challenging due to its selective expression in mature neurons and lack of sequence conservation across species.

View Article and Find Full Text PDF

Structurally conserved human anti-A35 antibodies protect mice and macaques from mpox virus infection.

Cell

August 2025

Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infec

The A35 protein, expressed on the enveloped virion of monkeypox (mpox) virus (MPXV), is essential for viral infection and spread within the host, making it an effective antiviral target. In this study, we demonstrated two human anti-A35 monoclonal antibodies (mAbs) displayed potential protection against MPXV in CAST/EiJ mice and rhesus macaques. Using cryo-electron microscopy, we determined two high-resolution structures of the A35 dimer in complex with the fragment of antigen binding of mAb 975 or mAb 981, revealing detailed interactions at the antigen-antibody interfaces.

View Article and Find Full Text PDF

Strategies targeting leukemic stem and progenitor cells (LSPCs) are needed for durable remissions in acute myeloid leukemia (AML) and high-risk myelodysplastic neoplasms (MDS). While CD123 constitutes a promising target on LSPCs and leukemic blasts, previous CD123-targeting approaches showed limited efficacy and challenging safety profiles. Here, we describe the preclinical efficacy and safety of the bispecific CD123/CD16A innate cell engager "AFM28", demonstrating superior activity against AML and MDS patient-derived LSPCs and blasts in vitro compared to an Fc-enhanced CD123-targeting antibody, especially towards CD123 and/or CD64 leukemic cells.

View Article and Find Full Text PDF

Stabilizing the RSV F protein in its prefusion conformation is crucial for effective vaccine development but has remained a significant challenge. Traditional stabilization methods, such as disulfide bonds and cavity-filling mutations, have been labor-intensive and have often resulted in suboptimal expression levels. Here, we report the design of an RSV prefusion F (preF) antigen using a proline-scanning strategy, incorporating seven proline substitutions to achieve stabilization.

View Article and Find Full Text PDF