98%
921
2 minutes
20
Although gut microbiota and lipid metabolites have been suggested to be closely associated with type 2 diabetes mellitus (T2DM), the interactions between gut microbiota, lipid metabolites, and the host in T2DM development remains unclear. Rhesus macaques may be the best animal model to investigate these relationships given their spontaneous development of T2DM. We identified eight spontaneous T2DM macaques and conducted a comprehensive study investigating the relationships using multi-omics sequencing technology. Our results from 16 S rRNA, metagenome, metabolome, and transcriptome analyses identified that gut microbiota imbalance, tryptophan metabolism and fatty acid β oxidation disorders, long-chain fatty acid (LCFA) accumulation, and inflammation occurred in T2DM macaques. We verified the accumulation of palmitic acid (PA) and activation of inflammation in T2DM macaques. Importantly, mice transplanted with spontaneous T2DM macaque fecal microbiota and fed a high PA diet developed prediabetes within 120 days. We determined that gut microbiota mediated the absorption of excess PA in the ileum, resulting in the accumulation of PA in the serum, consequently leading to T2DM in mice. In particular, we demonstrated that the specific microbiota composition was probably involved in the process. This study provides new insight into interactions between microbiota and metabolites and confirms causative effect of gut microbiota on T2DM development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396815 | PMC |
http://dx.doi.org/10.7554/eLife.104355 | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFJ Crohns Colitis
September 2025
Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.
Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.
Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.
Anesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.