Reprogramming cell shape with laser nano-patterning.

J Cell Sci

Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologies et Sciences pour le Vivant, CNRS/UJF/INRA/CEA, Grenoble, France.

Published: May 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell shape in vitro can be directed by geometrically defined micropatterned adhesion substrates. However conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the cell microenvironment. Here, we manipulate the shape of living cells in real time by using a tightly focused pulsed laser to introduce additional geometrically defined adhesion sites. The sub-micrometer resolution of the laser patterning allowed us to identify the critical distances between cell adhesion sites required for cell shape extension and contraction. This easy-to-handle method allows the precise control of specific actin-based structures that regulate cell architecture. Actin filament bundles or branched meshworks were induced, displaced or removed in response to specific dynamic modifications of the cell adhesion pattern. Isotropic branched actin meshworks could be forced to assemble new stress fibers locally and polarised in response to specific geometrical cues.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.104901DOI Listing

Publication Analysis

Top Keywords

cell shape
12
geometrically defined
8
adhesion sites
8
cell adhesion
8
response specific
8
cell
6
reprogramming cell
4
shape
4
shape laser
4
laser nano-patterning
4

Similar Publications

Although the surface micro-ornamentation of the scales within the skin of snakes has been the subject of many previous studies, there has been little work done on the spectacle, a protective (keratinised) goggle separated from the underlying cornea by a sub-spectacular space. The surface ultrastructure of the "Oberhäutchen" of the spectacle is examined in nine species of snakes (five aquatic and four terrestrial) using light and electron microscopy, micro-computed tomography and gel-based profilometry. Significant topographic differences in cell size (increases of between 5.

View Article and Find Full Text PDF

The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.

View Article and Find Full Text PDF

In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.

View Article and Find Full Text PDF

Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.

View Article and Find Full Text PDF

CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.

View Article and Find Full Text PDF