Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and inhibitory synapse formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2012.01.017DOI Listing

Publication Analysis

Top Keywords

synaptic excitatory/inhibitory
16
excitatory/inhibitory balance
12
vpa
9
valproic acid
8
hdac inhibitor
8
e/i balance
8
vpa astrocytes
8
primary rat
8
neuro-glial mixed
8
demonstrated vpa
8

Similar Publications

Levofloxacin-induced seizure susceptibility involves both enhanced glutamatergic and impaired GABAergic synaptic function.

Brain Res

September 2025

Department of Geriatric Rehabilitation, Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Guangxi, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. Electronic address: 13657813091@163

Levofloxacin (LVFX)-associated seizures are thought to arise from disrupted excitatory-inhibitory balance, but the underlying synaptic mechanisms remain unclear. This study investigated how LVFX alters both glutamatergic and GABAergic transmission to promote neuronal hyperexcitability. We combined in vitro and in vivo approaches using primary cortical neurons treated with LVFX and adult rats administered LVFX.

View Article and Find Full Text PDF

Study Objectives: Brief sleep loss alters cognition and the activity and synaptic structures of both principal neurons and interneurons in hippocampus. However, although sleep-dependent coordination of activity between hippocampus and neocortex is essential for memory consolidation, much less is known about how sleep loss affects neocortical input to hippocampus, or excitatory-inhibitory balance within neocortical structures. We aimed to test how the synaptic structures of SST+ interneurons in lateral and medial entorhinal cortex (LEC and MEC), which are the major neocortical input to hippocampus, are affected by brief sleep disruption in the hours following learning.

View Article and Find Full Text PDF

Network Activity Shapes Inhibitory Synaptic Development in the Mouse Hippocampus.

J Neurosci

September 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

The proper development of excitatory/inhibitory balance is critical for brain function, as any imbalance has been associated with myriad neuropsychiatric disorders. How this balance evolves during synaptic development remains unclear. To address this question, we examine how manipulations of SIRPα, a cell-adhesion molecule that organizes excitatory synaptic development in the hippocampus, affect inhibitory synaptogenesis to maintain excitatory/inhibitory balance, using mice of either sex.

View Article and Find Full Text PDF

Computational saliency map models have facilitated quantitative investigations into how bottom-up visual salience influences attention. Two primary approaches to modeling salience computation exist: one focuses on functional approximation, while the other explores neurobiological implementation. The former provides sufficient performance for applying saliency map models to eye-movement data analysis, whereas the latter offers hypotheses on how neuronal abnormalities affect visual salience.

View Article and Find Full Text PDF

Global and local nature of cortical slow waves.

iScience

September 2025

Instituto de Neurociencias CSIC-UMH, Alicante, Spain.

Explaining the macroscopic activity of a neuronal population from its microscopic properties poses a great challenge, not just because of the many local agents that play a role, but due to the impact of long-range connections from other brain regions. We used a computational model to explore how local and global components of a network shape the slow wave activity (SWA). A sensitivity analysis allowed us to explore how local properties and long-range connections shaped the SWA of a population and its neighbors.

View Article and Find Full Text PDF