98%
921
2 minutes
20
We study the phenomenon of stochastic resonance on a modular neuronal network consisting of several small-world subnetworks with a subthreshold periodic pacemaker. Numerical results show that the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the intensity of additive spatiotemporal noise. This effect of pacemaker-driven stochastic resonance of the system depends extensively on the local and the global network structure, such as the intra- and inter-coupling strengths, rewiring probability of individual small-world subnetwork, the number of links between different subnetworks, and the number of subnetworks. All these parameters play a key role in determining the ability of the network to enhance the noise-induced outreach of the localized subthreshold pacemaker, and only they bounded to a rather sharp interval of values warrant the emergence of the pronounced stochastic resonance phenomenon. Considering the rather important role of pacemakers in real-life, the presented results could have important implications for many biological processes that rely on an effective pacemaker for their proper functioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3620401 | DOI Listing |
Magn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.
View Article and Find Full Text PDFChaos
September 2025
Institute of Physics, Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia.
We demonstrate that nonlocal coupling enables control of the collective stochastic dynamics in the regime of coherence resonance. The control scheme based on the nonlocal interaction properties is presented by means of numerical simulation on an example of coupled FitzHugh-Nagumo oscillators. In particular, increasing the coupling radius is shown to enhance or to suppress the effect of coherence resonance, which is reflected in the evolution of the dependence of the correlation time and the deviation of interspike intervals on the noise intensity.
View Article and Find Full Text PDFFront Pain Res (Lausanne)
August 2025
Department of Statistics and Analytical Sciences, Kennesaw State University, Kennesaw, GA, United States.
Background: Low back pain (LBP) is the leading cause of disability worldwide. Up to half of moderate-to-severe acute LBP (aLBP) progress to chronic (cLBP), with neuromotor, fascial, and muscle pathology contributing to inoperable mechanical disability. A novel thermomechanical stimulation (M-Stim) device delivering stochastic and targeted vibration frequencies relieved LBP in a pilot.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, USA.
Pacemaker myocytes of the sinoatrial (SA) node initiate each heartbeat through coupled voltage and Ca oscillators, but whether ATP supply is regulated on a beat-by-beat schedule in these cells has been unclear. Using genetically encoded sensors targeted to the cytosol and mitochondria, we tracked beat-resolved ATP dynamics in intact mouse SA node and isolated myocytes. Cytosolic ATP rose transiently with each Ca transient and segregated into high- and low-gain phenotypes defined by the Ca-ATP coupling slope.
View Article and Find Full Text PDF